Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=12,y^{2}+x^{2}=74
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=12
Solve x+y=12 for x by isolating x on the left hand side of the equal sign.
x=-y+12
Subtract y from both sides of the equation.
y^{2}+\left(-y+12\right)^{2}=74
Substitute -y+12 for x in the other equation, y^{2}+x^{2}=74.
y^{2}+y^{2}-24y+144=74
Square -y+12.
2y^{2}-24y+144=74
Add y^{2} to y^{2}.
2y^{2}-24y+70=0
Subtract 74 from both sides of the equation.
y=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 70}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 12\left(-1\right)\times 2 for b, and 70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 70}}{2\times 2}
Square 1\times 12\left(-1\right)\times 2.
y=\frac{-\left(-24\right)±\sqrt{576-8\times 70}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-24\right)±\sqrt{576-560}}{2\times 2}
Multiply -8 times 70.
y=\frac{-\left(-24\right)±\sqrt{16}}{2\times 2}
Add 576 to -560.
y=\frac{-\left(-24\right)±4}{2\times 2}
Take the square root of 16.
y=\frac{24±4}{2\times 2}
The opposite of 1\times 12\left(-1\right)\times 2 is 24.
y=\frac{24±4}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{28}{4}
Now solve the equation y=\frac{24±4}{4} when ± is plus. Add 24 to 4.
y=7
Divide 28 by 4.
y=\frac{20}{4}
Now solve the equation y=\frac{24±4}{4} when ± is minus. Subtract 4 from 24.
y=5
Divide 20 by 4.
x=-7+12
There are two solutions for y: 7 and 5. Substitute 7 for y in the equation x=-y+12 to find the corresponding solution for x that satisfies both equations.
x=5
Add -7 to 12.
x=-5+12
Now substitute 5 for y in the equation x=-y+12 and solve to find the corresponding solution for x that satisfies both equations.
x=7
Add -5 to 12.
x=5,y=7\text{ or }x=7,y=5
The system is now solved.