Solve for x, y
x=7\text{, }y=0
x=-\frac{21}{5}=-4.2\text{, }y=\frac{28}{5}=5.6
Graph
Share
Copied to clipboard
x+2y=7,y^{2}+x^{2}=49
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=7
Solve x+2y=7 for x by isolating x on the left hand side of the equal sign.
x=-2y+7
Subtract 2y from both sides of the equation.
y^{2}+\left(-2y+7\right)^{2}=49
Substitute -2y+7 for x in the other equation, y^{2}+x^{2}=49.
y^{2}+4y^{2}-28y+49=49
Square -2y+7.
5y^{2}-28y+49=49
Add y^{2} to 4y^{2}.
5y^{2}-28y=0
Subtract 49 from both sides of the equation.
y=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-2\right)^{2} for a, 1\times 7\left(-2\right)\times 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-28\right)±28}{2\times 5}
Take the square root of \left(-28\right)^{2}.
y=\frac{28±28}{2\times 5}
The opposite of 1\times 7\left(-2\right)\times 2 is 28.
y=\frac{28±28}{10}
Multiply 2 times 1+1\left(-2\right)^{2}.
y=\frac{56}{10}
Now solve the equation y=\frac{28±28}{10} when ± is plus. Add 28 to 28.
y=\frac{28}{5}
Reduce the fraction \frac{56}{10} to lowest terms by extracting and canceling out 2.
y=\frac{0}{10}
Now solve the equation y=\frac{28±28}{10} when ± is minus. Subtract 28 from 28.
y=0
Divide 0 by 10.
x=-2\times \frac{28}{5}+7
There are two solutions for y: \frac{28}{5} and 0. Substitute \frac{28}{5} for y in the equation x=-2y+7 to find the corresponding solution for x that satisfies both equations.
x=-\frac{56}{5}+7
Multiply -2 times \frac{28}{5}.
x=-\frac{21}{5}
Add -2\times \frac{28}{5} to 7.
x=7
Now substitute 0 for y in the equation x=-2y+7 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{21}{5},y=\frac{28}{5}\text{ or }x=7,y=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}