Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2y=16
Solve x+2y=16 for x by isolating x on the left hand side of the equal sign.
x=-2y+16
Subtract 2y from both sides of the equation.
y^{2}+\left(-2y+16\right)^{2}=36
Substitute -2y+16 for x in the other equation, y^{2}+x^{2}=36.
y^{2}+4y^{2}-64y+256=36
Square -2y+16.
5y^{2}-64y+256=36
Add y^{2} to 4y^{2}.
5y^{2}-64y+220=0
Subtract 36 from both sides of the equation.
y=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 5\times 220}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-2\right)^{2} for a, 1\times 16\left(-2\right)\times 2 for b, and 220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-64\right)±\sqrt{4096-4\times 5\times 220}}{2\times 5}
Square 1\times 16\left(-2\right)\times 2.
y=\frac{-\left(-64\right)±\sqrt{4096-20\times 220}}{2\times 5}
Multiply -4 times 1+1\left(-2\right)^{2}.
y=\frac{-\left(-64\right)±\sqrt{4096-4400}}{2\times 5}
Multiply -20 times 220.
y=\frac{-\left(-64\right)±\sqrt{-304}}{2\times 5}
Add 4096 to -4400.
y=\frac{-\left(-64\right)±4\sqrt{19}i}{2\times 5}
Take the square root of -304.
y=\frac{64±4\sqrt{19}i}{2\times 5}
The opposite of 1\times 16\left(-2\right)\times 2 is 64.
y=\frac{64±4\sqrt{19}i}{10}
Multiply 2 times 1+1\left(-2\right)^{2}.
y=\frac{64+4\sqrt{19}i}{10}
Now solve the equation y=\frac{64±4\sqrt{19}i}{10} when ± is plus. Add 64 to 4i\sqrt{19}.
y=\frac{32+2\sqrt{19}i}{5}
Divide 64+4i\sqrt{19} by 10.
y=\frac{-4\sqrt{19}i+64}{10}
Now solve the equation y=\frac{64±4\sqrt{19}i}{10} when ± is minus. Subtract 4i\sqrt{19} from 64.
y=\frac{-2\sqrt{19}i+32}{5}
Divide 64-4i\sqrt{19} by 10.
x=-2\times \frac{32+2\sqrt{19}i}{5}+16
There are two solutions for y: \frac{32+2i\sqrt{19}}{5} and \frac{32-2i\sqrt{19}}{5}. Substitute \frac{32+2i\sqrt{19}}{5} for y in the equation x=-2y+16 to find the corresponding solution for x that satisfies both equations.
x=-2\times \frac{-2\sqrt{19}i+32}{5}+16
Now substitute \frac{32-2i\sqrt{19}}{5} for y in the equation x=-2y+16 and solve to find the corresponding solution for x that satisfies both equations.
x=-2\times \frac{32+2\sqrt{19}i}{5}+16,y=\frac{32+2\sqrt{19}i}{5}\text{ or }x=-2\times \frac{-2\sqrt{19}i+32}{5}+16,y=\frac{-2\sqrt{19}i+32}{5}
The system is now solved.