Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=4
Solve x-y=4 for x by isolating x on the left hand side of the equal sign.
x=y+4
Subtract -y from both sides of the equation.
y^{2}+\left(y+4\right)^{2}=3
Substitute y+4 for x in the other equation, y^{2}+x^{2}=3.
y^{2}+y^{2}+8y+16=3
Square y+4.
2y^{2}+8y+16=3
Add y^{2} to y^{2}.
2y^{2}+8y+13=0
Subtract 3 from both sides of the equation.
y=\frac{-8±\sqrt{8^{2}-4\times 2\times 13}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 4\times 1\times 2 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-8±\sqrt{64-4\times 2\times 13}}{2\times 2}
Square 1\times 4\times 1\times 2.
y=\frac{-8±\sqrt{64-8\times 13}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-8±\sqrt{64-104}}{2\times 2}
Multiply -8 times 13.
y=\frac{-8±\sqrt{-40}}{2\times 2}
Add 64 to -104.
y=\frac{-8±2\sqrt{10}i}{2\times 2}
Take the square root of -40.
y=\frac{-8±2\sqrt{10}i}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{-8+2\sqrt{10}i}{4}
Now solve the equation y=\frac{-8±2\sqrt{10}i}{4} when ± is plus. Add -8 to 2i\sqrt{10}.
y=\frac{\sqrt{10}i}{2}-2
Divide -8+2i\sqrt{10} by 4.
y=\frac{-2\sqrt{10}i-8}{4}
Now solve the equation y=\frac{-8±2\sqrt{10}i}{4} when ± is minus. Subtract 2i\sqrt{10} from -8.
y=-\frac{\sqrt{10}i}{2}-2
Divide -8-2i\sqrt{10} by 4.
x=\frac{\sqrt{10}i}{2}-2+4
There are two solutions for y: -2+\frac{i\sqrt{10}}{2} and -2-\frac{i\sqrt{10}}{2}. Substitute -2+\frac{i\sqrt{10}}{2} for y in the equation x=y+4 to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{10}i}{2}+2
Add 1\left(-2+\frac{i\sqrt{10}}{2}\right) to 4.
x=-\frac{\sqrt{10}i}{2}-2+4
Now substitute -2-\frac{i\sqrt{10}}{2} for y in the equation x=y+4 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{10}i}{2}+2
Add 1\left(-2-\frac{i\sqrt{10}}{2}\right) to 4.
x=\frac{\sqrt{10}i}{2}+2,y=\frac{\sqrt{10}i}{2}-2\text{ or }x=-\frac{\sqrt{10}i}{2}+2,y=-\frac{\sqrt{10}i}{2}-2
The system is now solved.