Solve for x, y (complex solution)
x=\frac{-\sqrt{21}i+5}{2}\approx 2.5-2.291287847i\text{, }y=\frac{-\sqrt{21}i-5}{2}\approx -2.5-2.291287847i
x=\frac{5+\sqrt{21}i}{2}\approx 2.5+2.291287847i\text{, }y=\frac{-5+\sqrt{21}i}{2}\approx -2.5+2.291287847i
Graph
Share
Copied to clipboard
x-y=5
Solve x-y=5 for x by isolating x on the left hand side of the equal sign.
x=y+5
Subtract -y from both sides of the equation.
y^{2}+\left(y+5\right)^{2}=2
Substitute y+5 for x in the other equation, y^{2}+x^{2}=2.
y^{2}+y^{2}+10y+25=2
Square y+5.
2y^{2}+10y+25=2
Add y^{2} to y^{2}.
2y^{2}+10y+23=0
Subtract 2 from both sides of the equation.
y=\frac{-10±\sqrt{10^{2}-4\times 2\times 23}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 5\times 1\times 2 for b, and 23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-10±\sqrt{100-4\times 2\times 23}}{2\times 2}
Square 1\times 5\times 1\times 2.
y=\frac{-10±\sqrt{100-8\times 23}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-10±\sqrt{100-184}}{2\times 2}
Multiply -8 times 23.
y=\frac{-10±\sqrt{-84}}{2\times 2}
Add 100 to -184.
y=\frac{-10±2\sqrt{21}i}{2\times 2}
Take the square root of -84.
y=\frac{-10±2\sqrt{21}i}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{-10+2\sqrt{21}i}{4}
Now solve the equation y=\frac{-10±2\sqrt{21}i}{4} when ± is plus. Add -10 to 2i\sqrt{21}.
y=\frac{-5+\sqrt{21}i}{2}
Divide -10+2i\sqrt{21} by 4.
y=\frac{-2\sqrt{21}i-10}{4}
Now solve the equation y=\frac{-10±2\sqrt{21}i}{4} when ± is minus. Subtract 2i\sqrt{21} from -10.
y=\frac{-\sqrt{21}i-5}{2}
Divide -10-2i\sqrt{21} by 4.
x=\frac{-5+\sqrt{21}i}{2}+5
There are two solutions for y: \frac{-5+i\sqrt{21}}{2} and \frac{-5-i\sqrt{21}}{2}. Substitute \frac{-5+i\sqrt{21}}{2} for y in the equation x=y+5 to find the corresponding solution for x that satisfies both equations.
x=\frac{-\sqrt{21}i-5}{2}+5
Now substitute \frac{-5-i\sqrt{21}}{2} for y in the equation x=y+5 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-5+\sqrt{21}i}{2}+5,y=\frac{-5+\sqrt{21}i}{2}\text{ or }x=\frac{-\sqrt{21}i-5}{2}+5,y=\frac{-\sqrt{21}i-5}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}