Solve for x, y
x=\frac{1-\sqrt{3}}{2}\approx -0.366025404\text{, }y=\frac{-\sqrt{3}-1}{2}\approx -1.366025404
x=\frac{\sqrt{3}+1}{2}\approx 1.366025404\text{, }y=\frac{\sqrt{3}-1}{2}\approx 0.366025404
Graph
Share
Copied to clipboard
x-y=1,y^{2}+x^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-y=1
Solve x-y=1 for x by isolating x on the left hand side of the equal sign.
x=y+1
Subtract -y from both sides of the equation.
y^{2}+\left(y+1\right)^{2}=2
Substitute y+1 for x in the other equation, y^{2}+x^{2}=2.
y^{2}+y^{2}+2y+1=2
Square y+1.
2y^{2}+2y+1=2
Add y^{2} to y^{2}.
2y^{2}+2y-1=0
Subtract 2 from both sides of the equation.
y=\frac{-2±\sqrt{2^{2}-4\times 2\left(-1\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 1\times 1\times 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
Square 1\times 1\times 1\times 2.
y=\frac{-2±\sqrt{4-8\left(-1\right)}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-2±\sqrt{4+8}}{2\times 2}
Multiply -8 times -1.
y=\frac{-2±\sqrt{12}}{2\times 2}
Add 4 to 8.
y=\frac{-2±2\sqrt{3}}{2\times 2}
Take the square root of 12.
y=\frac{-2±2\sqrt{3}}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{2\sqrt{3}-2}{4}
Now solve the equation y=\frac{-2±2\sqrt{3}}{4} when ± is plus. Add -2 to 2\sqrt{3}.
y=\frac{\sqrt{3}-1}{2}
Divide -2+2\sqrt{3} by 4.
y=\frac{-2\sqrt{3}-2}{4}
Now solve the equation y=\frac{-2±2\sqrt{3}}{4} when ± is minus. Subtract 2\sqrt{3} from -2.
y=\frac{-\sqrt{3}-1}{2}
Divide -2-2\sqrt{3} by 4.
x=\frac{\sqrt{3}-1}{2}+1
There are two solutions for y: \frac{-1+\sqrt{3}}{2} and \frac{-1-\sqrt{3}}{2}. Substitute \frac{-1+\sqrt{3}}{2} for y in the equation x=y+1 to find the corresponding solution for x that satisfies both equations.
x=\frac{-\sqrt{3}-1}{2}+1
Now substitute \frac{-1-\sqrt{3}}{2} for y in the equation x=y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{\sqrt{3}-1}{2}+1,y=\frac{\sqrt{3}-1}{2}\text{ or }x=\frac{-\sqrt{3}-1}{2}+1,y=\frac{-\sqrt{3}-1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}