Solve for x, y (complex solution)
x=\frac{9+3\sqrt{5}i}{2}\approx 4.5+3.354101966i\text{, }y=\frac{-3\sqrt{5}i+9}{2}\approx 4.5-3.354101966i
x=\frac{-3\sqrt{5}i+9}{2}\approx 4.5-3.354101966i\text{, }y=\frac{9+3\sqrt{5}i}{2}\approx 4.5+3.354101966i
Graph
Share
Copied to clipboard
x+y=9
Solve x+y=9 for x by isolating x on the left hand side of the equal sign.
x=-y+9
Subtract y from both sides of the equation.
y^{2}+\left(-y+9\right)^{2}=18
Substitute -y+9 for x in the other equation, y^{2}+x^{2}=18.
y^{2}+y^{2}-18y+81=18
Square -y+9.
2y^{2}-18y+81=18
Add y^{2} to y^{2}.
2y^{2}-18y+63=0
Subtract 18 from both sides of the equation.
y=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 63}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 9\left(-1\right)\times 2 for b, and 63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 63}}{2\times 2}
Square 1\times 9\left(-1\right)\times 2.
y=\frac{-\left(-18\right)±\sqrt{324-8\times 63}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-18\right)±\sqrt{324-504}}{2\times 2}
Multiply -8 times 63.
y=\frac{-\left(-18\right)±\sqrt{-180}}{2\times 2}
Add 324 to -504.
y=\frac{-\left(-18\right)±6\sqrt{5}i}{2\times 2}
Take the square root of -180.
y=\frac{18±6\sqrt{5}i}{2\times 2}
The opposite of 1\times 9\left(-1\right)\times 2 is 18.
y=\frac{18±6\sqrt{5}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{18+6\sqrt{5}i}{4}
Now solve the equation y=\frac{18±6\sqrt{5}i}{4} when ± is plus. Add 18 to 6i\sqrt{5}.
y=\frac{9+3\sqrt{5}i}{2}
Divide 18+6i\sqrt{5} by 4.
y=\frac{-6\sqrt{5}i+18}{4}
Now solve the equation y=\frac{18±6\sqrt{5}i}{4} when ± is minus. Subtract 6i\sqrt{5} from 18.
y=\frac{-3\sqrt{5}i+9}{2}
Divide 18-6i\sqrt{5} by 4.
x=-\frac{9+3\sqrt{5}i}{2}+9
There are two solutions for y: \frac{9+3i\sqrt{5}}{2} and \frac{9-3i\sqrt{5}}{2}. Substitute \frac{9+3i\sqrt{5}}{2} for y in the equation x=-y+9 to find the corresponding solution for x that satisfies both equations.
x=-\frac{-3\sqrt{5}i+9}{2}+9
Now substitute \frac{9-3i\sqrt{5}}{2} for y in the equation x=-y+9 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{9+3\sqrt{5}i}{2}+9,y=\frac{9+3\sqrt{5}i}{2}\text{ or }x=-\frac{-3\sqrt{5}i+9}{2}+9,y=\frac{-3\sqrt{5}i+9}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}