Solve for x, y (complex solution)
x=-\sqrt{31}i+6\approx 6-5.567764363i\text{, }y=-\sqrt{31}i-6\approx -6-5.567764363i
x=6+\sqrt{31}i\approx 6+5.567764363i\text{, }y=-6+\sqrt{31}i\approx -6+5.567764363i
Graph
Share
Copied to clipboard
x-y-2=10
Solve x-y-2=10 for x by isolating x on the left hand side of the equal sign.
x-y=12
Add 2 to both sides of the equation.
x=y+12
Subtract -y from both sides of the equation.
y^{2}+\left(y+12\right)^{2}=10
Substitute y+12 for x in the other equation, y^{2}+x^{2}=10.
y^{2}+y^{2}+24y+144=10
Square y+12.
2y^{2}+24y+144=10
Add y^{2} to y^{2}.
2y^{2}+24y+134=0
Subtract 10 from both sides of the equation.
y=\frac{-24±\sqrt{24^{2}-4\times 2\times 134}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 12\times 1\times 2 for b, and 134 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\times 2\times 134}}{2\times 2}
Square 1\times 12\times 1\times 2.
y=\frac{-24±\sqrt{576-8\times 134}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-24±\sqrt{576-1072}}{2\times 2}
Multiply -8 times 134.
y=\frac{-24±\sqrt{-496}}{2\times 2}
Add 576 to -1072.
y=\frac{-24±4\sqrt{31}i}{2\times 2}
Take the square root of -496.
y=\frac{-24±4\sqrt{31}i}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{-24+4\sqrt{31}i}{4}
Now solve the equation y=\frac{-24±4\sqrt{31}i}{4} when ± is plus. Add -24 to 4i\sqrt{31}.
y=-6+\sqrt{31}i
Divide -24+4i\sqrt{31} by 4.
y=\frac{-4\sqrt{31}i-24}{4}
Now solve the equation y=\frac{-24±4\sqrt{31}i}{4} when ± is minus. Subtract 4i\sqrt{31} from -24.
y=-\sqrt{31}i-6
Divide -24-4i\sqrt{31} by 4.
x=-6+\sqrt{31}i+12
There are two solutions for y: -6+i\sqrt{31} and -6-i\sqrt{31}. Substitute -6+i\sqrt{31} for y in the equation x=y+12 to find the corresponding solution for x that satisfies both equations.
x=6+\sqrt{31}i
Add 1\left(-6+i\sqrt{31}\right) to 12.
x=-\sqrt{31}i-6+12
Now substitute -6-i\sqrt{31} for y in the equation x=y+12 and solve to find the corresponding solution for x that satisfies both equations.
x=-\sqrt{31}i+6
Add 1\left(-6-i\sqrt{31}\right) to 12.
x=6+\sqrt{31}i,y=-6+\sqrt{31}i\text{ or }x=-\sqrt{31}i+6,y=-\sqrt{31}i-6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}