Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y-2=10
Solve x-y-2=10 for x by isolating x on the left hand side of the equal sign.
x-y=12
Add 2 to both sides of the equation.
x=y+12
Subtract -y from both sides of the equation.
y^{2}+\left(y+12\right)^{2}=10
Substitute y+12 for x in the other equation, y^{2}+x^{2}=10.
y^{2}+y^{2}+24y+144=10
Square y+12.
2y^{2}+24y+144=10
Add y^{2} to y^{2}.
2y^{2}+24y+134=0
Subtract 10 from both sides of the equation.
y=\frac{-24±\sqrt{24^{2}-4\times 2\times 134}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 12\times 1\times 2 for b, and 134 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\times 2\times 134}}{2\times 2}
Square 1\times 12\times 1\times 2.
y=\frac{-24±\sqrt{576-8\times 134}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
y=\frac{-24±\sqrt{576-1072}}{2\times 2}
Multiply -8 times 134.
y=\frac{-24±\sqrt{-496}}{2\times 2}
Add 576 to -1072.
y=\frac{-24±4\sqrt{31}i}{2\times 2}
Take the square root of -496.
y=\frac{-24±4\sqrt{31}i}{4}
Multiply 2 times 1+1\times 1^{2}.
y=\frac{-24+4\sqrt{31}i}{4}
Now solve the equation y=\frac{-24±4\sqrt{31}i}{4} when ± is plus. Add -24 to 4i\sqrt{31}.
y=-6+\sqrt{31}i
Divide -24+4i\sqrt{31} by 4.
y=\frac{-4\sqrt{31}i-24}{4}
Now solve the equation y=\frac{-24±4\sqrt{31}i}{4} when ± is minus. Subtract 4i\sqrt{31} from -24.
y=-\sqrt{31}i-6
Divide -24-4i\sqrt{31} by 4.
x=-6+\sqrt{31}i+12
There are two solutions for y: -6+i\sqrt{31} and -6-i\sqrt{31}. Substitute -6+i\sqrt{31} for y in the equation x=y+12 to find the corresponding solution for x that satisfies both equations.
x=6+\sqrt{31}i
Add 1\left(-6+i\sqrt{31}\right) to 12.
x=-\sqrt{31}i-6+12
Now substitute -6-i\sqrt{31} for y in the equation x=y+12 and solve to find the corresponding solution for x that satisfies both equations.
x=-\sqrt{31}i+6
Add 1\left(-6-i\sqrt{31}\right) to 12.
x=6+\sqrt{31}i,y=-6+\sqrt{31}i\text{ or }x=-\sqrt{31}i+6,y=-\sqrt{31}i-6
The system is now solved.