Solve for x, y (complex solution)
x=5+\sqrt{22}i\approx 5+4.69041576i\text{, }y=-\sqrt{22}i+5\approx 5-4.69041576i
x=-\sqrt{22}i+5\approx 5-4.69041576i\text{, }y=5+\sqrt{22}i\approx 5+4.69041576i
Graph
Share
Copied to clipboard
x+y=10
Solve x+y=10 for x by isolating x on the left hand side of the equal sign.
x=-y+10
Subtract y from both sides of the equation.
y^{2}+\left(-y+10\right)^{2}+3=9
Substitute -y+10 for x in the other equation, y^{2}+x^{2}+3=9.
y^{2}+y^{2}-20y+100+3=9
Square -y+10.
2y^{2}-20y+100+3=9
Add y^{2} to y^{2}.
2y^{2}-20y+103=9
Add 1\times 10^{2} to 3.
2y^{2}-20y+94=0
Subtract 9 from both sides of the equation.
y=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 2\times 94}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 10\left(-1\right)\times 2 for b, and 94 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-20\right)±\sqrt{400-4\times 2\times 94}}{2\times 2}
Square 1\times 10\left(-1\right)\times 2.
y=\frac{-\left(-20\right)±\sqrt{400-8\times 94}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-20\right)±\sqrt{400-752}}{2\times 2}
Multiply -8 times 94.
y=\frac{-\left(-20\right)±\sqrt{-352}}{2\times 2}
Add 400 to -752.
y=\frac{-\left(-20\right)±4\sqrt{22}i}{2\times 2}
Take the square root of -352.
y=\frac{20±4\sqrt{22}i}{2\times 2}
The opposite of 1\times 10\left(-1\right)\times 2 is 20.
y=\frac{20±4\sqrt{22}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{20+4\sqrt{22}i}{4}
Now solve the equation y=\frac{20±4\sqrt{22}i}{4} when ± is plus. Add 20 to 4i\sqrt{22}.
y=5+\sqrt{22}i
Divide 20+4i\sqrt{22} by 4.
y=\frac{-4\sqrt{22}i+20}{4}
Now solve the equation y=\frac{20±4\sqrt{22}i}{4} when ± is minus. Subtract 4i\sqrt{22} from 20.
y=-\sqrt{22}i+5
Divide 20-4i\sqrt{22} by 4.
x=-\left(5+\sqrt{22}i\right)+10
There are two solutions for y: 5+i\sqrt{22} and 5-i\sqrt{22}. Substitute 5+i\sqrt{22} for y in the equation x=-y+10 to find the corresponding solution for x that satisfies both equations.
x=-\left(-\sqrt{22}i+5\right)+10
Now substitute 5-i\sqrt{22} for y in the equation x=-y+10 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(5+\sqrt{22}i\right)+10,y=5+\sqrt{22}i\text{ or }x=-\left(-\sqrt{22}i+5\right)+10,y=-\sqrt{22}i+5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}