Solve for x, y
x=\frac{32-36\sqrt{93}}{97}\approx -3.249189973\text{, }y=\frac{-12\sqrt{93}-54}{97}\approx -1.749729991
x=\frac{36\sqrt{93}+32}{97}\approx 3.908983788\text{, }y=\frac{12\sqrt{93}-54}{97}\approx 0.636327929
Graph
Share
Copied to clipboard
x-3y=2
Consider the first equation. Subtract 3y from both sides.
9x^{2}+16y^{2}=144
Consider the second equation. Multiply both sides of the equation by 144, the least common multiple of 16,9.
x-3y=2,16y^{2}+9x^{2}=144
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-3y=2
Solve x-3y=2 for x by isolating x on the left hand side of the equal sign.
x=3y+2
Subtract -3y from both sides of the equation.
16y^{2}+9\left(3y+2\right)^{2}=144
Substitute 3y+2 for x in the other equation, 16y^{2}+9x^{2}=144.
16y^{2}+9\left(9y^{2}+12y+4\right)=144
Square 3y+2.
16y^{2}+81y^{2}+108y+36=144
Multiply 9 times 9y^{2}+12y+4.
97y^{2}+108y+36=144
Add 16y^{2} to 81y^{2}.
97y^{2}+108y-108=0
Subtract 144 from both sides of the equation.
y=\frac{-108±\sqrt{108^{2}-4\times 97\left(-108\right)}}{2\times 97}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16+9\times 3^{2} for a, 9\times 2\times 2\times 3 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-108±\sqrt{11664-4\times 97\left(-108\right)}}{2\times 97}
Square 9\times 2\times 2\times 3.
y=\frac{-108±\sqrt{11664-388\left(-108\right)}}{2\times 97}
Multiply -4 times 16+9\times 3^{2}.
y=\frac{-108±\sqrt{11664+41904}}{2\times 97}
Multiply -388 times -108.
y=\frac{-108±\sqrt{53568}}{2\times 97}
Add 11664 to 41904.
y=\frac{-108±24\sqrt{93}}{2\times 97}
Take the square root of 53568.
y=\frac{-108±24\sqrt{93}}{194}
Multiply 2 times 16+9\times 3^{2}.
y=\frac{24\sqrt{93}-108}{194}
Now solve the equation y=\frac{-108±24\sqrt{93}}{194} when ± is plus. Add -108 to 24\sqrt{93}.
y=\frac{12\sqrt{93}-54}{97}
Divide -108+24\sqrt{93} by 194.
y=\frac{-24\sqrt{93}-108}{194}
Now solve the equation y=\frac{-108±24\sqrt{93}}{194} when ± is minus. Subtract 24\sqrt{93} from -108.
y=\frac{-12\sqrt{93}-54}{97}
Divide -108-24\sqrt{93} by 194.
x=3\times \frac{12\sqrt{93}-54}{97}+2
There are two solutions for y: \frac{-54+12\sqrt{93}}{97} and \frac{-54-12\sqrt{93}}{97}. Substitute \frac{-54+12\sqrt{93}}{97} for y in the equation x=3y+2 to find the corresponding solution for x that satisfies both equations.
x=3\times \frac{-12\sqrt{93}-54}{97}+2
Now substitute \frac{-54-12\sqrt{93}}{97} for y in the equation x=3y+2 and solve to find the corresponding solution for x that satisfies both equations.
x=3\times \frac{12\sqrt{93}-54}{97}+2,y=\frac{12\sqrt{93}-54}{97}\text{ or }x=3\times \frac{-12\sqrt{93}-54}{97}+2,y=\frac{-12\sqrt{93}-54}{97}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}