Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

35x+85y=80x+80y
Consider the second equation. Use the distributive property to multiply 80 by x+y.
35x+85y-80x=80y
Subtract 80x from both sides.
-45x+85y=80y
Combine 35x and -80x to get -45x.
-45x+85y-80y=0
Subtract 80y from both sides.
-45x+5y=0
Combine 85y and -80y to get 5y.
x+y=80,-45x+5y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=80
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+80
Subtract y from both sides of the equation.
-45\left(-y+80\right)+5y=0
Substitute -y+80 for x in the other equation, -45x+5y=0.
45y-3600+5y=0
Multiply -45 times -y+80.
50y-3600=0
Add 45y to 5y.
50y=3600
Add 3600 to both sides of the equation.
y=72
Divide both sides by 50.
x=-72+80
Substitute 72 for y in x=-y+80. Because the resulting equation contains only one variable, you can solve for x directly.
x=8
Add 80 to -72.
x=8,y=72
The system is now solved.
35x+85y=80x+80y
Consider the second equation. Use the distributive property to multiply 80 by x+y.
35x+85y-80x=80y
Subtract 80x from both sides.
-45x+85y=80y
Combine 35x and -80x to get -45x.
-45x+85y-80y=0
Subtract 80y from both sides.
-45x+5y=0
Combine 85y and -80y to get 5y.
x+y=80,-45x+5y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\-45&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\-45&5\end{matrix}\right))\left(\begin{matrix}1&1\\-45&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-45&5\end{matrix}\right))\left(\begin{matrix}80\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\-45&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-45&5\end{matrix}\right))\left(\begin{matrix}80\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-45&5\end{matrix}\right))\left(\begin{matrix}80\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-45\right)}&-\frac{1}{5-\left(-45\right)}\\-\frac{-45}{5-\left(-45\right)}&\frac{1}{5-\left(-45\right)}\end{matrix}\right)\left(\begin{matrix}80\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{1}{50}\\\frac{9}{10}&\frac{1}{50}\end{matrix}\right)\left(\begin{matrix}80\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 80\\\frac{9}{10}\times 80\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\72\end{matrix}\right)
Do the arithmetic.
x=8,y=72
Extract the matrix elements x and y.
35x+85y=80x+80y
Consider the second equation. Use the distributive property to multiply 80 by x+y.
35x+85y-80x=80y
Subtract 80x from both sides.
-45x+85y=80y
Combine 35x and -80x to get -45x.
-45x+85y-80y=0
Subtract 80y from both sides.
-45x+5y=0
Combine 85y and -80y to get 5y.
x+y=80,-45x+5y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-45x-45y=-45\times 80,-45x+5y=0
To make x and -45x equal, multiply all terms on each side of the first equation by -45 and all terms on each side of the second by 1.
-45x-45y=-3600,-45x+5y=0
Simplify.
-45x+45x-45y-5y=-3600
Subtract -45x+5y=0 from -45x-45y=-3600 by subtracting like terms on each side of the equal sign.
-45y-5y=-3600
Add -45x to 45x. Terms -45x and 45x cancel out, leaving an equation with only one variable that can be solved.
-50y=-3600
Add -45y to -5y.
y=72
Divide both sides by -50.
-45x+5\times 72=0
Substitute 72 for y in -45x+5y=0. Because the resulting equation contains only one variable, you can solve for x directly.
-45x+360=0
Multiply 5 times 72.
-45x=-360
Subtract 360 from both sides of the equation.
x=8
Divide both sides by -45.
x=8,y=72
The system is now solved.