Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=1700,15x+20y=65
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1700
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1700
Subtract y from both sides of the equation.
15\left(-y+1700\right)+20y=65
Substitute -y+1700 for x in the other equation, 15x+20y=65.
-15y+25500+20y=65
Multiply 15 times -y+1700.
5y+25500=65
Add -15y to 20y.
5y=-25435
Subtract 25500 from both sides of the equation.
y=-5087
Divide both sides by 5.
x=-\left(-5087\right)+1700
Substitute -5087 for y in x=-y+1700. Because the resulting equation contains only one variable, you can solve for x directly.
x=5087+1700
Multiply -1 times -5087.
x=6787
Add 1700 to 5087.
x=6787,y=-5087
The system is now solved.
x+y=1700,15x+20y=65
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\15&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1700\\65\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1&1\\15&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1700\\65\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\15&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1700\\65\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1700\\65\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{20-15}&-\frac{1}{20-15}\\-\frac{15}{20-15}&\frac{1}{20-15}\end{matrix}\right)\left(\begin{matrix}1700\\65\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-\frac{1}{5}\\-3&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1700\\65\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 1700-\frac{1}{5}\times 65\\-3\times 1700+\frac{1}{5}\times 65\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6787\\-5087\end{matrix}\right)
Do the arithmetic.
x=6787,y=-5087
Extract the matrix elements x and y.
x+y=1700,15x+20y=65
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15x+15y=15\times 1700,15x+20y=65
To make x and 15x equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 1.
15x+15y=25500,15x+20y=65
Simplify.
15x-15x+15y-20y=25500-65
Subtract 15x+20y=65 from 15x+15y=25500 by subtracting like terms on each side of the equal sign.
15y-20y=25500-65
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
-5y=25500-65
Add 15y to -20y.
-5y=25435
Add 25500 to -65.
y=-5087
Divide both sides by -5.
15x+20\left(-5087\right)=65
Substitute -5087 for y in 15x+20y=65. Because the resulting equation contains only one variable, you can solve for x directly.
15x-101740=65
Multiply 20 times -5087.
15x=101805
Add 101740 to both sides of the equation.
x=6787
Divide both sides by 15.
x=6787,y=-5087
The system is now solved.