Solve for x, y
x = \frac{7150}{59} = 121\frac{11}{59} \approx 121.186440678
y = \frac{520}{59} = 8\frac{48}{59} \approx 8.813559322
Graph
Share
Copied to clipboard
8x=110y
Consider the second equation. Multiply 22 and 5 to get 110.
8x-110y=0
Subtract 110y from both sides.
x+y=130,8x-110y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=130
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+130
Subtract y from both sides of the equation.
8\left(-y+130\right)-110y=0
Substitute -y+130 for x in the other equation, 8x-110y=0.
-8y+1040-110y=0
Multiply 8 times -y+130.
-118y+1040=0
Add -8y to -110y.
-118y=-1040
Subtract 1040 from both sides of the equation.
y=\frac{520}{59}
Divide both sides by -118.
x=-\frac{520}{59}+130
Substitute \frac{520}{59} for y in x=-y+130. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{7150}{59}
Add 130 to -\frac{520}{59}.
x=\frac{7150}{59},y=\frac{520}{59}
The system is now solved.
8x=110y
Consider the second equation. Multiply 22 and 5 to get 110.
8x-110y=0
Subtract 110y from both sides.
x+y=130,8x-110y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\8&-110\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}130\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\8&-110\end{matrix}\right))\left(\begin{matrix}1&1\\8&-110\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8&-110\end{matrix}\right))\left(\begin{matrix}130\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\8&-110\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8&-110\end{matrix}\right))\left(\begin{matrix}130\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8&-110\end{matrix}\right))\left(\begin{matrix}130\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{110}{-110-8}&-\frac{1}{-110-8}\\-\frac{8}{-110-8}&\frac{1}{-110-8}\end{matrix}\right)\left(\begin{matrix}130\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{55}{59}&\frac{1}{118}\\\frac{4}{59}&-\frac{1}{118}\end{matrix}\right)\left(\begin{matrix}130\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{55}{59}\times 130\\\frac{4}{59}\times 130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7150}{59}\\\frac{520}{59}\end{matrix}\right)
Do the arithmetic.
x=\frac{7150}{59},y=\frac{520}{59}
Extract the matrix elements x and y.
8x=110y
Consider the second equation. Multiply 22 and 5 to get 110.
8x-110y=0
Subtract 110y from both sides.
x+y=130,8x-110y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8x+8y=8\times 130,8x-110y=0
To make x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 1.
8x+8y=1040,8x-110y=0
Simplify.
8x-8x+8y+110y=1040
Subtract 8x-110y=0 from 8x+8y=1040 by subtracting like terms on each side of the equal sign.
8y+110y=1040
Add 8x to -8x. Terms 8x and -8x cancel out, leaving an equation with only one variable that can be solved.
118y=1040
Add 8y to 110y.
y=\frac{520}{59}
Divide both sides by 118.
8x-110\times \frac{520}{59}=0
Substitute \frac{520}{59} for y in 8x-110y=0. Because the resulting equation contains only one variable, you can solve for x directly.
8x-\frac{57200}{59}=0
Multiply -110 times \frac{520}{59}.
8x=\frac{57200}{59}
Add \frac{57200}{59} to both sides of the equation.
x=\frac{7150}{59}
Divide both sides by 8.
x=\frac{7150}{59},y=\frac{520}{59}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}