Solve for x, y
x=1050
y=150
Graph
Share
Copied to clipboard
x+y=1200,0.5x+0.1y=540
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1200
Subtract y from both sides of the equation.
0.5\left(-y+1200\right)+0.1y=540
Substitute -y+1200 for x in the other equation, 0.5x+0.1y=540.
-0.5y+600+0.1y=540
Multiply 0.5 times -y+1200.
-0.4y+600=540
Add -\frac{y}{2} to \frac{y}{10}.
-0.4y=-60
Subtract 600 from both sides of the equation.
y=150
Divide both sides of the equation by -0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-150+1200
Substitute 150 for y in x=-y+1200. Because the resulting equation contains only one variable, you can solve for x directly.
x=1050
Add 1200 to -150.
x=1050,y=150
The system is now solved.
x+y=1200,0.5x+0.1y=540
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.5&0.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1200\\540\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.5&0.1\end{matrix}\right))\left(\begin{matrix}1&1\\0.5&0.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.5&0.1\end{matrix}\right))\left(\begin{matrix}1200\\540\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.5&0.1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.5&0.1\end{matrix}\right))\left(\begin{matrix}1200\\540\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.5&0.1\end{matrix}\right))\left(\begin{matrix}1200\\540\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.1}{0.1-0.5}&-\frac{1}{0.1-0.5}\\-\frac{0.5}{0.1-0.5}&\frac{1}{0.1-0.5}\end{matrix}\right)\left(\begin{matrix}1200\\540\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.25&2.5\\1.25&-2.5\end{matrix}\right)\left(\begin{matrix}1200\\540\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.25\times 1200+2.5\times 540\\1.25\times 1200-2.5\times 540\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1050\\150\end{matrix}\right)
Do the arithmetic.
x=1050,y=150
Extract the matrix elements x and y.
x+y=1200,0.5x+0.1y=540
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.5x+0.5y=0.5\times 1200,0.5x+0.1y=540
To make x and \frac{x}{2} equal, multiply all terms on each side of the first equation by 0.5 and all terms on each side of the second by 1.
0.5x+0.5y=600,0.5x+0.1y=540
Simplify.
0.5x-0.5x+0.5y-0.1y=600-540
Subtract 0.5x+0.1y=540 from 0.5x+0.5y=600 by subtracting like terms on each side of the equal sign.
0.5y-0.1y=600-540
Add \frac{x}{2} to -\frac{x}{2}. Terms \frac{x}{2} and -\frac{x}{2} cancel out, leaving an equation with only one variable that can be solved.
0.4y=600-540
Add \frac{y}{2} to -\frac{y}{10}.
0.4y=60
Add 600 to -540.
y=150
Divide both sides of the equation by 0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
0.5x+0.1\times 150=540
Substitute 150 for y in 0.5x+0.1y=540. Because the resulting equation contains only one variable, you can solve for x directly.
0.5x+15=540
Multiply 0.1 times 150.
0.5x=525
Subtract 15 from both sides of the equation.
x=1050
Multiply both sides by 2.
x=1050,y=150
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}