Solve for x, y
x=1000
y=9000
Graph
Share
Copied to clipboard
x+y=10000,0.09x+0.07y=720
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=10000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+10000
Subtract y from both sides of the equation.
0.09\left(-y+10000\right)+0.07y=720
Substitute -y+10000 for x in the other equation, 0.09x+0.07y=720.
-0.09y+900+0.07y=720
Multiply 0.09 times -y+10000.
-0.02y+900=720
Add -\frac{9y}{100} to \frac{7y}{100}.
-0.02y=-180
Subtract 900 from both sides of the equation.
y=9000
Multiply both sides by -50.
x=-9000+10000
Substitute 9000 for y in x=-y+10000. Because the resulting equation contains only one variable, you can solve for x directly.
x=1000
Add 10000 to -9000.
x=1000,y=9000
The system is now solved.
x+y=10000,0.09x+0.07y=720
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.09&0.07\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10000\\720\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.09&0.07\end{matrix}\right))\left(\begin{matrix}1&1\\0.09&0.07\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.09&0.07\end{matrix}\right))\left(\begin{matrix}10000\\720\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.09&0.07\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.09&0.07\end{matrix}\right))\left(\begin{matrix}10000\\720\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.09&0.07\end{matrix}\right))\left(\begin{matrix}10000\\720\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.07}{0.07-0.09}&-\frac{1}{0.07-0.09}\\-\frac{0.09}{0.07-0.09}&\frac{1}{0.07-0.09}\end{matrix}\right)\left(\begin{matrix}10000\\720\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3.5&50\\4.5&-50\end{matrix}\right)\left(\begin{matrix}10000\\720\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3.5\times 10000+50\times 720\\4.5\times 10000-50\times 720\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\9000\end{matrix}\right)
Do the arithmetic.
x=1000,y=9000
Extract the matrix elements x and y.
x+y=10000,0.09x+0.07y=720
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.09x+0.09y=0.09\times 10000,0.09x+0.07y=720
To make x and \frac{9x}{100} equal, multiply all terms on each side of the first equation by 0.09 and all terms on each side of the second by 1.
0.09x+0.09y=900,0.09x+0.07y=720
Simplify.
0.09x-0.09x+0.09y-0.07y=900-720
Subtract 0.09x+0.07y=720 from 0.09x+0.09y=900 by subtracting like terms on each side of the equal sign.
0.09y-0.07y=900-720
Add \frac{9x}{100} to -\frac{9x}{100}. Terms \frac{9x}{100} and -\frac{9x}{100} cancel out, leaving an equation with only one variable that can be solved.
0.02y=900-720
Add \frac{9y}{100} to -\frac{7y}{100}.
0.02y=180
Add 900 to -720.
y=9000
Multiply both sides by 50.
0.09x+0.07\times 9000=720
Substitute 9000 for y in 0.09x+0.07y=720. Because the resulting equation contains only one variable, you can solve for x directly.
0.09x+630=720
Multiply 0.07 times 9000.
0.09x=90
Subtract 630 from both sides of the equation.
x=1000
Divide both sides of the equation by 0.09, which is the same as multiplying both sides by the reciprocal of the fraction.
x=1000,y=9000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}