Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=1000,4x+2y=3200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1000
Subtract y from both sides of the equation.
4\left(-y+1000\right)+2y=3200
Substitute -y+1000 for x in the other equation, 4x+2y=3200.
-4y+4000+2y=3200
Multiply 4 times -y+1000.
-2y+4000=3200
Add -4y to 2y.
-2y=-800
Subtract 4000 from both sides of the equation.
y=400
Divide both sides by -2.
x=-400+1000
Substitute 400 for y in x=-y+1000. Because the resulting equation contains only one variable, you can solve for x directly.
x=600
Add 1000 to -400.
x=600,y=400
The system is now solved.
x+y=1000,4x+2y=3200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\3200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1000\\3200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1000\\3200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1000\\3200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}1000\\3200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1000\\3200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1000+\frac{1}{2}\times 3200\\2\times 1000-\frac{1}{2}\times 3200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}600\\400\end{matrix}\right)
Do the arithmetic.
x=600,y=400
Extract the matrix elements x and y.
x+y=1000,4x+2y=3200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 1000,4x+2y=3200
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=4000,4x+2y=3200
Simplify.
4x-4x+4y-2y=4000-3200
Subtract 4x+2y=3200 from 4x+4y=4000 by subtracting like terms on each side of the equal sign.
4y-2y=4000-3200
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
2y=4000-3200
Add 4y to -2y.
2y=800
Add 4000 to -3200.
y=400
Divide both sides by 2.
4x+2\times 400=3200
Substitute 400 for y in 4x+2y=3200. Because the resulting equation contains only one variable, you can solve for x directly.
4x+800=3200
Multiply 2 times 400.
4x=2400
Subtract 800 from both sides of the equation.
x=600
Divide both sides by 4.
x=600,y=400
The system is now solved.