Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=1000,4x+\frac{1}{4}y=1000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1000
Subtract y from both sides of the equation.
4\left(-y+1000\right)+\frac{1}{4}y=1000
Substitute -y+1000 for x in the other equation, 4x+\frac{1}{4}y=1000.
-4y+4000+\frac{1}{4}y=1000
Multiply 4 times -y+1000.
-\frac{15}{4}y+4000=1000
Add -4y to \frac{y}{4}.
-\frac{15}{4}y=-3000
Subtract 4000 from both sides of the equation.
y=800
Divide both sides of the equation by -\frac{15}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-800+1000
Substitute 800 for y in x=-y+1000. Because the resulting equation contains only one variable, you can solve for x directly.
x=200
Add 1000 to -800.
x=200,y=800
The system is now solved.
x+y=1000,4x+\frac{1}{4}y=1000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\1000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1&1\\4&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1000\\1000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&\frac{1}{4}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1000\\1000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1000\\1000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{\frac{1}{4}-4}&-\frac{1}{\frac{1}{4}-4}\\-\frac{4}{\frac{1}{4}-4}&\frac{1}{\frac{1}{4}-4}\end{matrix}\right)\left(\begin{matrix}1000\\1000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{4}{15}\\\frac{16}{15}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}1000\\1000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\times 1000+\frac{4}{15}\times 1000\\\frac{16}{15}\times 1000-\frac{4}{15}\times 1000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\800\end{matrix}\right)
Do the arithmetic.
x=200,y=800
Extract the matrix elements x and y.
x+y=1000,4x+\frac{1}{4}y=1000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 1000,4x+\frac{1}{4}y=1000
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=4000,4x+\frac{1}{4}y=1000
Simplify.
4x-4x+4y-\frac{1}{4}y=4000-1000
Subtract 4x+\frac{1}{4}y=1000 from 4x+4y=4000 by subtracting like terms on each side of the equal sign.
4y-\frac{1}{4}y=4000-1000
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
\frac{15}{4}y=4000-1000
Add 4y to -\frac{y}{4}.
\frac{15}{4}y=3000
Add 4000 to -1000.
y=800
Divide both sides of the equation by \frac{15}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
4x+\frac{1}{4}\times 800=1000
Substitute 800 for y in 4x+\frac{1}{4}y=1000. Because the resulting equation contains only one variable, you can solve for x directly.
4x+200=1000
Multiply \frac{1}{4} times 800.
4x=800
Subtract 200 from both sides of the equation.
x=200
Divide both sides by 4.
x=200,y=800
The system is now solved.