Solve for x, y, z
x = \frac{62}{21} = 2\frac{20}{21} \approx 2.952380952
y = \frac{100}{21} = 4\frac{16}{21} \approx 4.761904762
z=-\frac{5}{7}\approx -0.714285714
Share
Copied to clipboard
x=-y-z+7
Solve x+y+z=7 for x.
4\left(-y-z+7\right)-2y-z=3 2\left(-y-z+7\right)-y+3z=-1
Substitute -y-z+7 for x in the second and third equation.
y=\frac{25}{6}-\frac{5}{6}z z=-15+3y
Solve these equations for y and z respectively.
z=-15+3\left(\frac{25}{6}-\frac{5}{6}z\right)
Substitute \frac{25}{6}-\frac{5}{6}z for y in the equation z=-15+3y.
z=-\frac{5}{7}
Solve z=-15+3\left(\frac{25}{6}-\frac{5}{6}z\right) for z.
y=\frac{25}{6}-\frac{5}{6}\left(-\frac{5}{7}\right)
Substitute -\frac{5}{7} for z in the equation y=\frac{25}{6}-\frac{5}{6}z.
y=\frac{100}{21}
Calculate y from y=\frac{25}{6}-\frac{5}{6}\left(-\frac{5}{7}\right).
x=-\frac{100}{21}-\left(-\frac{5}{7}\right)+7
Substitute \frac{100}{21} for y and -\frac{5}{7} for z in the equation x=-y-z+7.
x=\frac{62}{21}
Calculate x from x=-\frac{100}{21}-\left(-\frac{5}{7}\right)+7.
x=\frac{62}{21} y=\frac{100}{21} z=-\frac{5}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}