Solve for x, y
x = \frac{468}{29} = 16\frac{4}{29} \approx 16.137931034
y=-\frac{24}{29}\approx -0.827586207
Graph
Share
Copied to clipboard
x+5y=12,7x+6y=108
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+5y=12
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-5y+12
Subtract 5y from both sides of the equation.
7\left(-5y+12\right)+6y=108
Substitute -5y+12 for x in the other equation, 7x+6y=108.
-35y+84+6y=108
Multiply 7 times -5y+12.
-29y+84=108
Add -35y to 6y.
-29y=24
Subtract 84 from both sides of the equation.
y=-\frac{24}{29}
Divide both sides by -29.
x=-5\left(-\frac{24}{29}\right)+12
Substitute -\frac{24}{29} for y in x=-5y+12. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{120}{29}+12
Multiply -5 times -\frac{24}{29}.
x=\frac{468}{29}
Add 12 to \frac{120}{29}.
x=\frac{468}{29},y=-\frac{24}{29}
The system is now solved.
x+5y=12,7x+6y=108
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&5\\7&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\108\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&5\\7&6\end{matrix}\right))\left(\begin{matrix}1&5\\7&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\7&6\end{matrix}\right))\left(\begin{matrix}12\\108\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&5\\7&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\7&6\end{matrix}\right))\left(\begin{matrix}12\\108\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\7&6\end{matrix}\right))\left(\begin{matrix}12\\108\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6-5\times 7}&-\frac{5}{6-5\times 7}\\-\frac{7}{6-5\times 7}&\frac{1}{6-5\times 7}\end{matrix}\right)\left(\begin{matrix}12\\108\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{29}&\frac{5}{29}\\\frac{7}{29}&-\frac{1}{29}\end{matrix}\right)\left(\begin{matrix}12\\108\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{29}\times 12+\frac{5}{29}\times 108\\\frac{7}{29}\times 12-\frac{1}{29}\times 108\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{468}{29}\\-\frac{24}{29}\end{matrix}\right)
Do the arithmetic.
x=\frac{468}{29},y=-\frac{24}{29}
Extract the matrix elements x and y.
x+5y=12,7x+6y=108
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7x+7\times 5y=7\times 12,7x+6y=108
To make x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 1.
7x+35y=84,7x+6y=108
Simplify.
7x-7x+35y-6y=84-108
Subtract 7x+6y=108 from 7x+35y=84 by subtracting like terms on each side of the equal sign.
35y-6y=84-108
Add 7x to -7x. Terms 7x and -7x cancel out, leaving an equation with only one variable that can be solved.
29y=84-108
Add 35y to -6y.
29y=-24
Add 84 to -108.
y=-\frac{24}{29}
Divide both sides by 29.
7x+6\left(-\frac{24}{29}\right)=108
Substitute -\frac{24}{29} for y in 7x+6y=108. Because the resulting equation contains only one variable, you can solve for x directly.
7x-\frac{144}{29}=108
Multiply 6 times -\frac{24}{29}.
7x=\frac{3276}{29}
Add \frac{144}{29} to both sides of the equation.
x=\frac{468}{29}
Divide both sides by 7.
x=\frac{468}{29},y=-\frac{24}{29}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}