Solve for x, y, z
x=-12
y = \frac{17}{2} = 8\frac{1}{2} = 8.5
z = \frac{49}{2} = 24\frac{1}{2} = 24.5
Share
Copied to clipboard
x=-2y+5
Solve x+2y=5 for x.
2\left(-2y+5\right)-y+3z=41
Substitute -2y+5 for x in the equation 2x-y+3z=41.
y=\frac{1}{3}+\frac{1}{3}z z=\frac{5}{3}y+\frac{31}{3}
Solve the second equation for y and the third equation for z.
z=\frac{5}{3}\left(\frac{1}{3}+\frac{1}{3}z\right)+\frac{31}{3}
Substitute \frac{1}{3}+\frac{1}{3}z for y in the equation z=\frac{5}{3}y+\frac{31}{3}.
z=\frac{49}{2}
Solve z=\frac{5}{3}\left(\frac{1}{3}+\frac{1}{3}z\right)+\frac{31}{3} for z.
y=\frac{1}{3}+\frac{1}{3}\times \frac{49}{2}
Substitute \frac{49}{2} for z in the equation y=\frac{1}{3}+\frac{1}{3}z.
y=\frac{17}{2}
Calculate y from y=\frac{1}{3}+\frac{1}{3}\times \frac{49}{2}.
x=-2\times \frac{17}{2}+5
Substitute \frac{17}{2} for y in the equation x=-2y+5.
x=-12
Calculate x from x=-2\times \frac{17}{2}+5.
x=-12 y=\frac{17}{2} z=\frac{49}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}