Solve for x, y
x=-561
y=284
Graph
Share
Copied to clipboard
x+2y=7,-x-y=277
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=7
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-2y+7
Subtract 2y from both sides of the equation.
-\left(-2y+7\right)-y=277
Substitute -2y+7 for x in the other equation, -x-y=277.
2y-7-y=277
Multiply -1 times -2y+7.
y-7=277
Add 2y to -y.
y=284
Add 7 to both sides of the equation.
x=-2\times 284+7
Substitute 284 for y in x=-2y+7. Because the resulting equation contains only one variable, you can solve for x directly.
x=-568+7
Multiply -2 times 284.
x=-561
Add 7 to -568.
x=-561,y=284
The system is now solved.
x+2y=7,-x-y=277
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\277\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\-1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\left(-1\right)}&-\frac{2}{-1-2\left(-1\right)}\\-\frac{-1}{-1-2\left(-1\right)}&\frac{1}{-1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7-2\times 277\\7+277\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-561\\284\end{matrix}\right)
Do the arithmetic.
x=-561,y=284
Extract the matrix elements x and y.
x+2y=7,-x-y=277
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-x-2y=-7,-x-y=277
To make x and -x equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by 1.
-x+x-2y+y=-7-277
Subtract -x-y=277 from -x-2y=-7 by subtracting like terms on each side of the equal sign.
-2y+y=-7-277
Add -x to x. Terms -x and x cancel out, leaving an equation with only one variable that can be solved.
-y=-7-277
Add -2y to y.
-y=-284
Add -7 to -277.
y=284
Divide both sides by -1.
-x-284=277
Substitute 284 for y in -x-y=277. Because the resulting equation contains only one variable, you can solve for x directly.
-x=561
Add 284 to both sides of the equation.
x=-561
Divide both sides by -1.
x=-561,y=284
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}