Solve for x, y
x=11
y=13
Graph
Share
Copied to clipboard
x+11y=154,26x-y=273
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+11y=154
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-11y+154
Subtract 11y from both sides of the equation.
26\left(-11y+154\right)-y=273
Substitute -11y+154 for x in the other equation, 26x-y=273.
-286y+4004-y=273
Multiply 26 times -11y+154.
-287y+4004=273
Add -286y to -y.
-287y=-3731
Subtract 4004 from both sides of the equation.
y=13
Divide both sides by -287.
x=-11\times 13+154
Substitute 13 for y in x=-11y+154. Because the resulting equation contains only one variable, you can solve for x directly.
x=-143+154
Multiply -11 times 13.
x=11
Add 154 to -143.
x=11,y=13
The system is now solved.
x+11y=154,26x-y=273
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&11\\26&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}154\\273\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&11\\26&-1\end{matrix}\right))\left(\begin{matrix}1&11\\26&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&11\\26&-1\end{matrix}\right))\left(\begin{matrix}154\\273\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&11\\26&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&11\\26&-1\end{matrix}\right))\left(\begin{matrix}154\\273\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&11\\26&-1\end{matrix}\right))\left(\begin{matrix}154\\273\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-11\times 26}&-\frac{11}{-1-11\times 26}\\-\frac{26}{-1-11\times 26}&\frac{1}{-1-11\times 26}\end{matrix}\right)\left(\begin{matrix}154\\273\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{287}&\frac{11}{287}\\\frac{26}{287}&-\frac{1}{287}\end{matrix}\right)\left(\begin{matrix}154\\273\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{287}\times 154+\frac{11}{287}\times 273\\\frac{26}{287}\times 154-\frac{1}{287}\times 273\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\13\end{matrix}\right)
Do the arithmetic.
x=11,y=13
Extract the matrix elements x and y.
x+11y=154,26x-y=273
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
26x+26\times 11y=26\times 154,26x-y=273
To make x and 26x equal, multiply all terms on each side of the first equation by 26 and all terms on each side of the second by 1.
26x+286y=4004,26x-y=273
Simplify.
26x-26x+286y+y=4004-273
Subtract 26x-y=273 from 26x+286y=4004 by subtracting like terms on each side of the equal sign.
286y+y=4004-273
Add 26x to -26x. Terms 26x and -26x cancel out, leaving an equation with only one variable that can be solved.
287y=4004-273
Add 286y to y.
287y=3731
Add 4004 to -273.
y=13
Divide both sides by 287.
26x-13=273
Substitute 13 for y in 26x-y=273. Because the resulting equation contains only one variable, you can solve for x directly.
26x=286
Add 13 to both sides of the equation.
x=11
Divide both sides by 26.
x=11,y=13
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}