Solve for v, P
v = -\frac{4390}{89} = -49\frac{29}{89} \approx -49.325842697
P = \frac{19520}{89} = 219\frac{29}{89} \approx 219.325842697
Share
Copied to clipboard
v+P=170,v+90P+160=19850
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
v+P=170
Choose one of the equations and solve it for v by isolating v on the left hand side of the equal sign.
v=-P+170
Subtract P from both sides of the equation.
-P+170+90P+160=19850
Substitute -P+170 for v in the other equation, v+90P+160=19850.
89P+170+160=19850
Add -P to 90P.
89P+330=19850
Add 170 to 160.
89P=19520
Subtract 330 from both sides of the equation.
P=\frac{19520}{89}
Divide both sides by 89.
v=-\frac{19520}{89}+170
Substitute \frac{19520}{89} for P in v=-P+170. Because the resulting equation contains only one variable, you can solve for v directly.
v=-\frac{4390}{89}
Add 170 to -\frac{19520}{89}.
v=-\frac{4390}{89},P=\frac{19520}{89}
The system is now solved.
v+P=170,v+90P+160=19850
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&90\end{matrix}\right)\left(\begin{matrix}v\\P\end{matrix}\right)=\left(\begin{matrix}170\\19690\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&90\end{matrix}\right))\left(\begin{matrix}1&1\\1&90\end{matrix}\right)\left(\begin{matrix}v\\P\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&90\end{matrix}\right))\left(\begin{matrix}170\\19690\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&90\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}v\\P\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&90\end{matrix}\right))\left(\begin{matrix}170\\19690\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}v\\P\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&90\end{matrix}\right))\left(\begin{matrix}170\\19690\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}v\\P\end{matrix}\right)=\left(\begin{matrix}\frac{90}{90-1}&-\frac{1}{90-1}\\-\frac{1}{90-1}&\frac{1}{90-1}\end{matrix}\right)\left(\begin{matrix}170\\19690\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}v\\P\end{matrix}\right)=\left(\begin{matrix}\frac{90}{89}&-\frac{1}{89}\\-\frac{1}{89}&\frac{1}{89}\end{matrix}\right)\left(\begin{matrix}170\\19690\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}v\\P\end{matrix}\right)=\left(\begin{matrix}\frac{90}{89}\times 170-\frac{1}{89}\times 19690\\-\frac{1}{89}\times 170+\frac{1}{89}\times 19690\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}v\\P\end{matrix}\right)=\left(\begin{matrix}-\frac{4390}{89}\\\frac{19520}{89}\end{matrix}\right)
Do the arithmetic.
v=-\frac{4390}{89},P=\frac{19520}{89}
Extract the matrix elements v and P.
v+P=170,v+90P+160=19850
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
v-v+P-90P-160=170-19850
Subtract v+90P+160=19850 from v+P=170 by subtracting like terms on each side of the equal sign.
P-90P-160=170-19850
Add v to -v. Terms v and -v cancel out, leaving an equation with only one variable that can be solved.
-89P-160=170-19850
Add P to -90P.
-89P-160=-19680
Add 170 to -19850.
-89P=-19520
Add 160 to both sides of the equation.
P=\frac{19520}{89}
Divide both sides by -89.
v+90\times \frac{19520}{89}+160=19850
Substitute \frac{19520}{89} for P in v+90P+160=19850. Because the resulting equation contains only one variable, you can solve for v directly.
v+\frac{1756800}{89}+160=19850
Multiply 90 times \frac{19520}{89}.
v+\frac{1771040}{89}=19850
Add \frac{1756800}{89} to 160.
v=-\frac{4390}{89}
Subtract \frac{1771040}{89} from both sides of the equation.
v=-\frac{4390}{89},P=\frac{19520}{89}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}