Solve for p, q, k
p=-1
q=-1
k=-2
Share
Copied to clipboard
k=p+q
Solve p+q=k for k.
2p-q=p+q+1 q-p=3\left(p+q\right)+6
Substitute p+q for k in the second and third equation.
q=-\frac{1}{2}+\frac{1}{2}p p=-\frac{3}{2}-\frac{1}{2}q
Solve these equations for q and p respectively.
p=-\frac{3}{2}-\frac{1}{2}\left(-\frac{1}{2}+\frac{1}{2}p\right)
Substitute -\frac{1}{2}+\frac{1}{2}p for q in the equation p=-\frac{3}{2}-\frac{1}{2}q.
p=-1
Solve p=-\frac{3}{2}-\frac{1}{2}\left(-\frac{1}{2}+\frac{1}{2}p\right) for p.
q=-\frac{1}{2}+\frac{1}{2}\left(-1\right)
Substitute -1 for p in the equation q=-\frac{1}{2}+\frac{1}{2}p.
q=-1
Calculate q from q=-\frac{1}{2}+\frac{1}{2}\left(-1\right).
k=-1-1
Substitute -1 for q and -1 for p in the equation k=p+q.
k=-2
Calculate k from k=-1-1.
p=-1 q=-1 k=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}