Solve for m, n
m=\frac{\sqrt{17}+3}{2}\approx 3.561552813\text{, }n=\frac{3-\sqrt{17}}{2}\approx -0.561552813
m=\frac{3-\sqrt{17}}{2}\approx -0.561552813\text{, }n=\frac{\sqrt{17}+3}{2}\approx 3.561552813
Share
Copied to clipboard
m+n=3,n^{2}+m^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
m+n=3
Solve m+n=3 for m by isolating m on the left hand side of the equal sign.
m=-n+3
Subtract n from both sides of the equation.
n^{2}+\left(-n+3\right)^{2}=13
Substitute -n+3 for m in the other equation, n^{2}+m^{2}=13.
n^{2}+n^{2}-6n+9=13
Square -n+3.
2n^{2}-6n+9=13
Add n^{2} to n^{2}.
2n^{2}-6n-4=0
Subtract 13 from both sides of the equation.
n=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 3\left(-1\right)\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-4\right)}}{2\times 2}
Square 1\times 3\left(-1\right)\times 2.
n=\frac{-\left(-6\right)±\sqrt{36-8\left(-4\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
n=\frac{-\left(-6\right)±\sqrt{36+32}}{2\times 2}
Multiply -8 times -4.
n=\frac{-\left(-6\right)±\sqrt{68}}{2\times 2}
Add 36 to 32.
n=\frac{-\left(-6\right)±2\sqrt{17}}{2\times 2}
Take the square root of 68.
n=\frac{6±2\sqrt{17}}{2\times 2}
The opposite of 1\times 3\left(-1\right)\times 2 is 6.
n=\frac{6±2\sqrt{17}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
n=\frac{2\sqrt{17}+6}{4}
Now solve the equation n=\frac{6±2\sqrt{17}}{4} when ± is plus. Add 6 to 2\sqrt{17}.
n=\frac{\sqrt{17}+3}{2}
Divide 6+2\sqrt{17} by 4.
n=\frac{6-2\sqrt{17}}{4}
Now solve the equation n=\frac{6±2\sqrt{17}}{4} when ± is minus. Subtract 2\sqrt{17} from 6.
n=\frac{3-\sqrt{17}}{2}
Divide 6-2\sqrt{17} by 4.
m=-\frac{\sqrt{17}+3}{2}+3
There are two solutions for n: \frac{3+\sqrt{17}}{2} and \frac{3-\sqrt{17}}{2}. Substitute \frac{3+\sqrt{17}}{2} for n in the equation m=-n+3 to find the corresponding solution for m that satisfies both equations.
m=-\frac{3-\sqrt{17}}{2}+3
Now substitute \frac{3-\sqrt{17}}{2} for n in the equation m=-n+3 and solve to find the corresponding solution for m that satisfies both equations.
m=-\frac{\sqrt{17}+3}{2}+3,n=\frac{\sqrt{17}+3}{2}\text{ or }m=-\frac{3-\sqrt{17}}{2}+3,n=\frac{3-\sqrt{17}}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}