Skip to main content
Solve for m, n
Tick mark Image

Similar Problems from Web Search

Share

m+n=3,n^{2}+m^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
m+n=3
Solve m+n=3 for m by isolating m on the left hand side of the equal sign.
m=-n+3
Subtract n from both sides of the equation.
n^{2}+\left(-n+3\right)^{2}=13
Substitute -n+3 for m in the other equation, n^{2}+m^{2}=13.
n^{2}+n^{2}-6n+9=13
Square -n+3.
2n^{2}-6n+9=13
Add n^{2} to n^{2}.
2n^{2}-6n-4=0
Subtract 13 from both sides of the equation.
n=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 3\left(-1\right)\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-4\right)}}{2\times 2}
Square 1\times 3\left(-1\right)\times 2.
n=\frac{-\left(-6\right)±\sqrt{36-8\left(-4\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
n=\frac{-\left(-6\right)±\sqrt{36+32}}{2\times 2}
Multiply -8 times -4.
n=\frac{-\left(-6\right)±\sqrt{68}}{2\times 2}
Add 36 to 32.
n=\frac{-\left(-6\right)±2\sqrt{17}}{2\times 2}
Take the square root of 68.
n=\frac{6±2\sqrt{17}}{2\times 2}
The opposite of 1\times 3\left(-1\right)\times 2 is 6.
n=\frac{6±2\sqrt{17}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
n=\frac{2\sqrt{17}+6}{4}
Now solve the equation n=\frac{6±2\sqrt{17}}{4} when ± is plus. Add 6 to 2\sqrt{17}.
n=\frac{\sqrt{17}+3}{2}
Divide 6+2\sqrt{17} by 4.
n=\frac{6-2\sqrt{17}}{4}
Now solve the equation n=\frac{6±2\sqrt{17}}{4} when ± is minus. Subtract 2\sqrt{17} from 6.
n=\frac{3-\sqrt{17}}{2}
Divide 6-2\sqrt{17} by 4.
m=-\frac{\sqrt{17}+3}{2}+3
There are two solutions for n: \frac{3+\sqrt{17}}{2} and \frac{3-\sqrt{17}}{2}. Substitute \frac{3+\sqrt{17}}{2} for n in the equation m=-n+3 to find the corresponding solution for m that satisfies both equations.
m=-\frac{3-\sqrt{17}}{2}+3
Now substitute \frac{3-\sqrt{17}}{2} for n in the equation m=-n+3 and solve to find the corresponding solution for m that satisfies both equations.
m=-\frac{\sqrt{17}+3}{2}+3,n=\frac{\sqrt{17}+3}{2}\text{ or }m=-\frac{3-\sqrt{17}}{2}+3,n=\frac{3-\sqrt{17}}{2}
The system is now solved.