\left. \begin{array} { l } { m ^ { 2 } + 2 m n + n ^ { 2 } - 1 } \\ { a ^ { 2 } + 4 - 4 a - 9 n ^ { 2 } } \end{array} \right.
Least Common Multiple
\left(\left(2-a\right)^{2}-9n^{2}\right)\left(\left(m+n\right)^{2}-1\right)
Evaluate
\left(m+n\right)^{2}-1,\ \left(a-2\right)^{2}-9n^{2}
Share
Copied to clipboard
\left(m+n\right)^{2}-1=\left(m+n-1\right)\left(m+n+1\right) \left(a-2\right)^{2}-9n^{2}=\left(-3n-a+2\right)\left(3n-a+2\right)
Factor the expressions that are not already factored.
\left(2-a-3n\right)\left(m+n-1\right)\left(3n-a+2\right)\left(m+n+1\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
a^{2}m^{2}-9m^{2}n^{2}-4am^{2}+4m^{2}-18mn^{3}+2mna^{2}-8amn+8mn-9n^{4}+a^{2}n^{2}-4an^{2}+13n^{2}-a^{2}+4a-4
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}