Skip to main content
Solve for l, z
Tick mark Image

Similar Problems from Web Search

Share

l+z=8,z^{2}+l^{2}=34
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
l+z=8
Solve l+z=8 for l by isolating l on the left hand side of the equal sign.
l=-z+8
Subtract z from both sides of the equation.
z^{2}+\left(-z+8\right)^{2}=34
Substitute -z+8 for l in the other equation, z^{2}+l^{2}=34.
z^{2}+z^{2}-16z+64=34
Square -z+8.
2z^{2}-16z+64=34
Add z^{2} to z^{2}.
2z^{2}-16z+30=0
Subtract 34 from both sides of the equation.
z=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2\times 30}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 8\left(-1\right)\times 2 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-16\right)±\sqrt{256-4\times 2\times 30}}{2\times 2}
Square 1\times 8\left(-1\right)\times 2.
z=\frac{-\left(-16\right)±\sqrt{256-8\times 30}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
z=\frac{-\left(-16\right)±\sqrt{256-240}}{2\times 2}
Multiply -8 times 30.
z=\frac{-\left(-16\right)±\sqrt{16}}{2\times 2}
Add 256 to -240.
z=\frac{-\left(-16\right)±4}{2\times 2}
Take the square root of 16.
z=\frac{16±4}{2\times 2}
The opposite of 1\times 8\left(-1\right)\times 2 is 16.
z=\frac{16±4}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
z=\frac{20}{4}
Now solve the equation z=\frac{16±4}{4} when ± is plus. Add 16 to 4.
z=5
Divide 20 by 4.
z=\frac{12}{4}
Now solve the equation z=\frac{16±4}{4} when ± is minus. Subtract 4 from 16.
z=3
Divide 12 by 4.
l=-5+8
There are two solutions for z: 5 and 3. Substitute 5 for z in the equation l=-z+8 to find the corresponding solution for l that satisfies both equations.
l=3
Add -5 to 8.
l=-3+8
Now substitute 3 for z in the equation l=-z+8 and solve to find the corresponding solution for l that satisfies both equations.
l=5
Add -3 to 8.
l=3,z=5\text{ or }l=5,z=3
The system is now solved.