Solve for h, t
t=0
h=150
Share
Copied to clipboard
h-t+20=170,h+t-20=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
h-t+20=170
Choose one of the equations and solve it for h by isolating h on the left hand side of the equal sign.
h-t=150
Subtract 20 from both sides of the equation.
h=t+150
Add t to both sides of the equation.
t+150+t-20=130
Substitute t+150 for h in the other equation, h+t-20=130.
2t+150-20=130
Add t to t.
2t+130=130
Add 150 to -20.
2t=0
Subtract 130 from both sides of the equation.
t=0
Divide both sides by 2.
h=150
Substitute 0 for t in h=t+150. Because the resulting equation contains only one variable, you can solve for h directly.
h=150,t=0
The system is now solved.
h-t+20=170,h+t-20=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}h\\t\end{matrix}\right)=\left(\begin{matrix}150\\150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}h\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}150\\150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}h\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}150\\150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}h\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}150\\150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}h\\t\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}150\\150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}h\\t\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}150\\150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}h\\t\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 150+\frac{1}{2}\times 150\\-\frac{1}{2}\times 150+\frac{1}{2}\times 150\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}h\\t\end{matrix}\right)=\left(\begin{matrix}150\\0\end{matrix}\right)
Do the arithmetic.
h=150,t=0
Extract the matrix elements h and t.
h-t+20=170,h+t-20=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
h-h-t-t+20+20=170-130
Subtract h+t-20=130 from h-t+20=170 by subtracting like terms on each side of the equal sign.
-t-t+20+20=170-130
Add h to -h. Terms h and -h cancel out, leaving an equation with only one variable that can be solved.
-2t+20+20=170-130
Add -t to -t.
-2t+40=170-130
Add 20 to 20.
-2t+40=40
Add 170 to -130.
-2t=0
Subtract 40 from both sides of the equation.
t=0
Divide both sides by -2.
h-20=130
Substitute 0 for t in h+t-20=130. Because the resulting equation contains only one variable, you can solve for h directly.
h=150
Add 20 to both sides of the equation.
h=150,t=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}