Solve for d, g
d=12000
g=600
Share
Copied to clipboard
d-2.65g=10410
Consider the first equation. Subtract 2.65g from both sides.
d-20g=0
Consider the second equation. Subtract 20g from both sides.
d-2.65g=10410,d-20g=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
d-2.65g=10410
Choose one of the equations and solve it for d by isolating d on the left hand side of the equal sign.
d=2.65g+10410
Add \frac{53g}{20} to both sides of the equation.
2.65g+10410-20g=0
Substitute \frac{53g}{20}+10410 for d in the other equation, d-20g=0.
-17.35g+10410=0
Add \frac{53g}{20} to -20g.
-17.35g=-10410
Subtract 10410 from both sides of the equation.
g=600
Divide both sides of the equation by -17.35, which is the same as multiplying both sides by the reciprocal of the fraction.
d=2.65\times 600+10410
Substitute 600 for g in d=2.65g+10410. Because the resulting equation contains only one variable, you can solve for d directly.
d=1590+10410
Multiply 2.65 times 600.
d=12000
Add 10410 to 1590.
d=12000,g=600
The system is now solved.
d-2.65g=10410
Consider the first equation. Subtract 2.65g from both sides.
d-20g=0
Consider the second equation. Subtract 20g from both sides.
d-2.65g=10410,d-20g=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-2.65\\1&-20\end{matrix}\right)\left(\begin{matrix}d\\g\end{matrix}\right)=\left(\begin{matrix}10410\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-2.65\\1&-20\end{matrix}\right))\left(\begin{matrix}1&-2.65\\1&-20\end{matrix}\right)\left(\begin{matrix}d\\g\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2.65\\1&-20\end{matrix}\right))\left(\begin{matrix}10410\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-2.65\\1&-20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}d\\g\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2.65\\1&-20\end{matrix}\right))\left(\begin{matrix}10410\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}d\\g\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2.65\\1&-20\end{matrix}\right))\left(\begin{matrix}10410\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}d\\g\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{-20-\left(-2.65\right)}&-\frac{-2.65}{-20-\left(-2.65\right)}\\-\frac{1}{-20-\left(-2.65\right)}&\frac{1}{-20-\left(-2.65\right)}\end{matrix}\right)\left(\begin{matrix}10410\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}d\\g\end{matrix}\right)=\left(\begin{matrix}\frac{400}{347}&-\frac{53}{347}\\\frac{20}{347}&-\frac{20}{347}\end{matrix}\right)\left(\begin{matrix}10410\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}d\\g\end{matrix}\right)=\left(\begin{matrix}\frac{400}{347}\times 10410\\\frac{20}{347}\times 10410\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}d\\g\end{matrix}\right)=\left(\begin{matrix}12000\\600\end{matrix}\right)
Do the arithmetic.
d=12000,g=600
Extract the matrix elements d and g.
d-2.65g=10410
Consider the first equation. Subtract 2.65g from both sides.
d-20g=0
Consider the second equation. Subtract 20g from both sides.
d-2.65g=10410,d-20g=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
d-d-2.65g+20g=10410
Subtract d-20g=0 from d-2.65g=10410 by subtracting like terms on each side of the equal sign.
-2.65g+20g=10410
Add d to -d. Terms d and -d cancel out, leaving an equation with only one variable that can be solved.
17.35g=10410
Add -\frac{53g}{20} to 20g.
g=600
Divide both sides of the equation by 17.35, which is the same as multiplying both sides by the reciprocal of the fraction.
d-20\times 600=0
Substitute 600 for g in d-20g=0. Because the resulting equation contains only one variable, you can solve for d directly.
d-12000=0
Multiply -20 times 600.
d=12000
Add 12000 to both sides of the equation.
d=12000,g=600
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}