Solve for b, c, t
t=1
b=15
c=-3
Share
Copied to clipboard
c=-3
Consider the third equation. Divide both sides by -1.
b+3\left(-3\right)=6
Consider the second equation. Insert the known values of variables into the equation.
b-9=6
Multiply 3 and -3 to get -9.
b=6+9
Add 9 to both sides.
b=15
Add 6 and 9 to get 15.
15+3\left(-3\right)=6t
Consider the first equation. Insert the known values of variables into the equation.
15-9=6t
Multiply 3 and -3 to get -9.
6=6t
Subtract 9 from 15 to get 6.
6t=6
Swap sides so that all variable terms are on the left hand side.
t=\frac{6}{6}
Divide both sides by 6.
t=1
Divide 6 by 6 to get 1.
b=15 c=-3 t=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}