Solve for a, n
a=0.6
n=-3
Share
Copied to clipboard
a\left(-3\right)+2=a\left(-3+2\right)+0.8
Consider the first equation. Insert the known values of variables into the equation.
a\left(-3\right)+2=a\left(-1\right)+0.8
Add -3 and 2 to get -1.
a\left(-3\right)+2-a\left(-1\right)=0.8
Subtract a\left(-1\right) from both sides.
-2a+2=0.8
Combine a\left(-3\right) and -a\left(-1\right) to get -2a.
-2a=0.8-2
Subtract 2 from both sides.
-2a=-1.2
Subtract 2 from 0.8 to get -1.2.
a=\frac{-1.2}{-2}
Divide both sides by -2.
a=\frac{-12}{-20}
Expand \frac{-1.2}{-2} by multiplying both numerator and the denominator by 10.
a=\frac{3}{5}
Reduce the fraction \frac{-12}{-20} to lowest terms by extracting and canceling out -4.
a=\frac{3}{5} n=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}