Solve for a, b
a=-\frac{\sqrt{26}i}{2}+3\approx 3-2.549509757i\text{, }b=-\frac{\sqrt{26}i}{2}-3\approx -3-2.549509757i
a=\frac{\sqrt{26}i}{2}+3\approx 3+2.549509757i\text{, }b=\frac{\sqrt{26}i}{2}-3\approx -3+2.549509757i
Share
Copied to clipboard
a-b=6
Solve a-b=6 for a by isolating a on the left hand side of the equal sign.
a=b+6
Subtract -b from both sides of the equation.
b^{2}+\left(b+6\right)^{2}=5
Substitute b+6 for a in the other equation, b^{2}+a^{2}=5.
b^{2}+b^{2}+12b+36=5
Square b+6.
2b^{2}+12b+36=5
Add b^{2} to b^{2}.
2b^{2}+12b+31=0
Subtract 5 from both sides of the equation.
b=\frac{-12±\sqrt{12^{2}-4\times 2\times 31}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times 1^{2} for a, 1\times 6\times 1\times 2 for b, and 31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-12±\sqrt{144-4\times 2\times 31}}{2\times 2}
Square 1\times 6\times 1\times 2.
b=\frac{-12±\sqrt{144-8\times 31}}{2\times 2}
Multiply -4 times 1+1\times 1^{2}.
b=\frac{-12±\sqrt{144-248}}{2\times 2}
Multiply -8 times 31.
b=\frac{-12±\sqrt{-104}}{2\times 2}
Add 144 to -248.
b=\frac{-12±2\sqrt{26}i}{2\times 2}
Take the square root of -104.
b=\frac{-12±2\sqrt{26}i}{4}
Multiply 2 times 1+1\times 1^{2}.
b=\frac{-12+2\sqrt{26}i}{4}
Now solve the equation b=\frac{-12±2\sqrt{26}i}{4} when ± is plus. Add -12 to 2i\sqrt{26}.
b=\frac{\sqrt{26}i}{2}-3
Divide -12+2i\sqrt{26} by 4.
b=\frac{-2\sqrt{26}i-12}{4}
Now solve the equation b=\frac{-12±2\sqrt{26}i}{4} when ± is minus. Subtract 2i\sqrt{26} from -12.
b=-\frac{\sqrt{26}i}{2}-3
Divide -12-2i\sqrt{26} by 4.
a=\frac{\sqrt{26}i}{2}-3+6
There are two solutions for b: -3+\frac{i\sqrt{26}}{2} and -3-\frac{i\sqrt{26}}{2}. Substitute -3+\frac{i\sqrt{26}}{2} for b in the equation a=b+6 to find the corresponding solution for a that satisfies both equations.
a=\frac{\sqrt{26}i}{2}+3
Add 1\left(-3+\frac{i\sqrt{26}}{2}\right) to 6.
a=-\frac{\sqrt{26}i}{2}-3+6
Now substitute -3-\frac{i\sqrt{26}}{2} for b in the equation a=b+6 and solve to find the corresponding solution for a that satisfies both equations.
a=-\frac{\sqrt{26}i}{2}+3
Add 1\left(-3-\frac{i\sqrt{26}}{2}\right) to 6.
a=\frac{\sqrt{26}i}{2}+3,b=\frac{\sqrt{26}i}{2}-3\text{ or }a=-\frac{\sqrt{26}i}{2}+3,b=-\frac{\sqrt{26}i}{2}-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}