Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

a+b=1,b^{2}+a^{2}=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a+b=1
Solve a+b=1 for a by isolating a on the left hand side of the equal sign.
a=-b+1
Subtract b from both sides of the equation.
b^{2}+\left(-b+1\right)^{2}=5
Substitute -b+1 for a in the other equation, b^{2}+a^{2}=5.
b^{2}+b^{2}-2b+1=5
Square -b+1.
2b^{2}-2b+1=5
Add b^{2} to b^{2}.
2b^{2}-2b-4=0
Subtract 5 from both sides of the equation.
b=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 1\left(-1\right)\times 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-4\right)}}{2\times 2}
Square 1\times 1\left(-1\right)\times 2.
b=\frac{-\left(-2\right)±\sqrt{4-8\left(-4\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
b=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times 2}
Multiply -8 times -4.
b=\frac{-\left(-2\right)±\sqrt{36}}{2\times 2}
Add 4 to 32.
b=\frac{-\left(-2\right)±6}{2\times 2}
Take the square root of 36.
b=\frac{2±6}{2\times 2}
The opposite of 1\times 1\left(-1\right)\times 2 is 2.
b=\frac{2±6}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
b=\frac{8}{4}
Now solve the equation b=\frac{2±6}{4} when ± is plus. Add 2 to 6.
b=2
Divide 8 by 4.
b=-\frac{4}{4}
Now solve the equation b=\frac{2±6}{4} when ± is minus. Subtract 6 from 2.
b=-1
Divide -4 by 4.
a=-2+1
There are two solutions for b: 2 and -1. Substitute 2 for b in the equation a=-b+1 to find the corresponding solution for a that satisfies both equations.
a=-1
Add -2 to 1.
a=-\left(-1\right)+1
Now substitute -1 for b in the equation a=-b+1 and solve to find the corresponding solution for a that satisfies both equations.
a=1+1
Multiply -1 times -1.
a=2
Add -\left(-1\right) to 1.
a=-1,b=2\text{ or }a=2,b=-1
The system is now solved.