Solve for V_A, V_B, V_C
V_{A} = -\frac{188}{7} = -26\frac{6}{7} \approx -26.857142857
V_{B} = \frac{468}{7} = 66\frac{6}{7} \approx 66.857142857
V_{C}=0
Share
Copied to clipboard
V_{A}=-V_{B}-V_{C}+40
Solve V_{A}+V_{B}+V_{C}=40 for V_{A}.
4V_{C}+7\left(-V_{B}-V_{C}+40\right)=-188 4V_{B}+11\left(-V_{B}-V_{C}+40\right)=-28
Substitute -V_{B}-V_{C}+40 for V_{A} in the second and third equation.
V_{B}=\frac{468}{7}-\frac{3}{7}V_{C} V_{C}=\frac{468}{11}-\frac{7}{11}V_{B}
Solve these equations for V_{B} and V_{C} respectively.
V_{C}=\frac{468}{11}-\frac{7}{11}\left(\frac{468}{7}-\frac{3}{7}V_{C}\right)
Substitute \frac{468}{7}-\frac{3}{7}V_{C} for V_{B} in the equation V_{C}=\frac{468}{11}-\frac{7}{11}V_{B}.
V_{C}=0
Solve V_{C}=\frac{468}{11}-\frac{7}{11}\left(\frac{468}{7}-\frac{3}{7}V_{C}\right) for V_{C}.
V_{B}=\frac{468}{7}-\frac{3}{7}\times 0
Substitute 0 for V_{C} in the equation V_{B}=\frac{468}{7}-\frac{3}{7}V_{C}.
V_{B}=\frac{468}{7}
Calculate V_{B} from V_{B}=\frac{468}{7}-\frac{3}{7}\times 0.
V_{A}=-\frac{468}{7}-0+40
Substitute \frac{468}{7} for V_{B} and 0 for V_{C} in the equation V_{A}=-V_{B}-V_{C}+40.
V_{A}=-\frac{188}{7}
Calculate V_{A} from V_{A}=-\frac{468}{7}-0+40.
V_{A}=-\frac{188}{7} V_{B}=\frac{468}{7} V_{C}=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}