Skip to main content
Solve for V_A, V_B, V_C
Tick mark Image

Similar Problems from Web Search

Share

V_{A}=-V_{B}-V_{C}+40
Solve V_{A}+V_{B}+V_{C}=40 for V_{A}.
4V_{C}+7\left(-V_{B}-V_{C}+40\right)=-188 4V_{B}+11\left(-V_{B}-V_{C}+40\right)=-28
Substitute -V_{B}-V_{C}+40 for V_{A} in the second and third equation.
V_{B}=\frac{468}{7}-\frac{3}{7}V_{C} V_{C}=\frac{468}{11}-\frac{7}{11}V_{B}
Solve these equations for V_{B} and V_{C} respectively.
V_{C}=\frac{468}{11}-\frac{7}{11}\left(\frac{468}{7}-\frac{3}{7}V_{C}\right)
Substitute \frac{468}{7}-\frac{3}{7}V_{C} for V_{B} in the equation V_{C}=\frac{468}{11}-\frac{7}{11}V_{B}.
V_{C}=0
Solve V_{C}=\frac{468}{11}-\frac{7}{11}\left(\frac{468}{7}-\frac{3}{7}V_{C}\right) for V_{C}.
V_{B}=\frac{468}{7}-\frac{3}{7}\times 0
Substitute 0 for V_{C} in the equation V_{B}=\frac{468}{7}-\frac{3}{7}V_{C}.
V_{B}=\frac{468}{7}
Calculate V_{B} from V_{B}=\frac{468}{7}-\frac{3}{7}\times 0.
V_{A}=-\frac{468}{7}-0+40
Substitute \frac{468}{7} for V_{B} and 0 for V_{C} in the equation V_{A}=-V_{B}-V_{C}+40.
V_{A}=-\frac{188}{7}
Calculate V_{A} from V_{A}=-\frac{468}{7}-0+40.
V_{A}=-\frac{188}{7} V_{B}=\frac{468}{7} V_{C}=0
The system is now solved.