Solve for R_2, R_1, R_3
R_{2} = \frac{21}{2} = 10\frac{1}{2} = 10.5
R_{1} = \frac{15}{2} = 7\frac{1}{2} = 7.5
R_{3}=-\frac{1}{2}=-0.5
Share
Copied to clipboard
R_{2}=-R_{1}+18
Solve R_{2}+R_{1}=18 for R_{2}.
-R_{1}+18+R_{3}=10
Substitute -R_{1}+18 for R_{2} in the equation R_{2}+R_{3}=10.
R_{1}=8+R_{3} R_{3}=-R_{1}+7
Solve the second equation for R_{1} and the third equation for R_{3}.
R_{3}=-\left(8+R_{3}\right)+7
Substitute 8+R_{3} for R_{1} in the equation R_{3}=-R_{1}+7.
R_{3}=-\frac{1}{2}
Solve R_{3}=-\left(8+R_{3}\right)+7 for R_{3}.
R_{1}=8-\frac{1}{2}
Substitute -\frac{1}{2} for R_{3} in the equation R_{1}=8+R_{3}.
R_{1}=\frac{15}{2}
Calculate R_{1} from R_{1}=8-\frac{1}{2}.
R_{2}=-\frac{15}{2}+18
Substitute \frac{15}{2} for R_{1} in the equation R_{2}=-R_{1}+18.
R_{2}=\frac{21}{2}
Calculate R_{2} from R_{2}=-\frac{15}{2}+18.
R_{2}=\frac{21}{2} R_{1}=\frac{15}{2} R_{3}=-\frac{1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}