Solve for F, μ
F=10.5
\mu =0.25
Share
Copied to clipboard
12\mu +15\times 0.6=1.5\times 8
Consider the second equation. Multiply 15 and 0.8 to get 12.
12\mu +9=1.5\times 8
Multiply 15 and 0.6 to get 9.
12\mu +9=12
Multiply 1.5 and 8 to get 12.
12\mu =12-9
Subtract 9 from both sides.
12\mu =3
Subtract 9 from 12 to get 3.
\mu =\frac{3}{12}
Divide both sides by 12.
\mu =\frac{1}{4}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
F-0.8\times 15\times \frac{1}{4}-15\times 0-6=1.5
Consider the first equation. Insert the known values of variables into the equation.
F-12\times \frac{1}{4}-15\times 0-6=1.5
Multiply 0.8 and 15 to get 12.
F-3-15\times 0-6=1.5
Multiply 12 and \frac{1}{4} to get 3.
F-3-0-6=1.5
Multiply 15 and 0 to get 0.
F-3-0=1.5+6
Add 6 to both sides.
F-3-0=7.5
Add 1.5 and 6 to get 7.5.
F-3=7.5+0
Add 0 to both sides.
F-3=7.5
Add 7.5 and 0 to get 7.5.
F=7.5+3
Add 3 to both sides.
F=10.5
Add 7.5 and 3 to get 10.5.
F=10.5 \mu =\frac{1}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}