Solve for F, x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
F = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
9x-3x=9
Consider the second equation. Subtract 3x from both sides.
6x=9
Combine 9x and -3x to get 6x.
x=\frac{9}{6}
Divide both sides by 6.
x=\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
F\times \frac{3}{2}=2\times \frac{3}{2}-1
Consider the first equation. Insert the known values of variables into the equation.
F\times \frac{3}{2}=3-1
Multiply 2 and \frac{3}{2} to get 3.
F\times \frac{3}{2}=2
Subtract 1 from 3 to get 2.
F=2\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}.
F=\frac{4}{3}
Multiply 2 and \frac{2}{3} to get \frac{4}{3}.
F=\frac{4}{3} x=\frac{3}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}