Solve for A, B, C
A = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
B = \frac{17}{3} = 5\frac{2}{3} \approx 5.666666667
C = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Share
Copied to clipboard
A=-B-C+7
Solve A+B+C=7 for A.
-B-C+7-C=4 B-\left(-B-C+7\right)=3
Substitute -B-C+7 for A in the second and third equation.
B=-2C+3 C=-2B+10
Solve these equations for B and C respectively.
C=-2\left(-2C+3\right)+10
Substitute -2C+3 for B in the equation C=-2B+10.
C=-\frac{4}{3}
Solve C=-2\left(-2C+3\right)+10 for C.
B=-2\left(-\frac{4}{3}\right)+3
Substitute -\frac{4}{3} for C in the equation B=-2C+3.
B=\frac{17}{3}
Calculate B from B=-2\left(-\frac{4}{3}\right)+3.
A=-\frac{17}{3}-\left(-\frac{4}{3}\right)+7
Substitute \frac{17}{3} for B and -\frac{4}{3} for C in the equation A=-B-C+7.
A=\frac{8}{3}
Calculate A from A=-\frac{17}{3}-\left(-\frac{4}{3}\right)+7.
A=\frac{8}{3} B=\frac{17}{3} C=-\frac{4}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}