Solve for x, y
x=3670
y=-2770
Graph
Share
Copied to clipboard
x+y=900
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
40x+50y=8300
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+y=900,40x+50y=8300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=900
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+900
Subtract y from both sides of the equation.
40\left(-y+900\right)+50y=8300
Substitute -y+900 for x in the other equation, 40x+50y=8300.
-40y+36000+50y=8300
Multiply 40 times -y+900.
10y+36000=8300
Add -40y to 50y.
10y=-27700
Subtract 36000 from both sides of the equation.
y=-2770
Divide both sides by 10.
x=-\left(-2770\right)+900
Substitute -2770 for y in x=-y+900. Because the resulting equation contains only one variable, you can solve for x directly.
x=2770+900
Multiply -1 times -2770.
x=3670
Add 900 to 2770.
x=3670,y=-2770
The system is now solved.
x+y=900
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
40x+50y=8300
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+y=900,40x+50y=8300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\40&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}900\\8300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\40&50\end{matrix}\right))\left(\begin{matrix}1&1\\40&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&50\end{matrix}\right))\left(\begin{matrix}900\\8300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\40&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&50\end{matrix}\right))\left(\begin{matrix}900\\8300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&50\end{matrix}\right))\left(\begin{matrix}900\\8300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-40}&-\frac{1}{50-40}\\-\frac{40}{50-40}&\frac{1}{50-40}\end{matrix}\right)\left(\begin{matrix}900\\8300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-\frac{1}{10}\\-4&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}900\\8300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 900-\frac{1}{10}\times 8300\\-4\times 900+\frac{1}{10}\times 8300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3670\\-2770\end{matrix}\right)
Do the arithmetic.
x=3670,y=-2770
Extract the matrix elements x and y.
x+y=900
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
40x+50y=8300
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+y=900,40x+50y=8300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40x+40y=40\times 900,40x+50y=8300
To make x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 1.
40x+40y=36000,40x+50y=8300
Simplify.
40x-40x+40y-50y=36000-8300
Subtract 40x+50y=8300 from 40x+40y=36000 by subtracting like terms on each side of the equal sign.
40y-50y=36000-8300
Add 40x to -40x. Terms 40x and -40x cancel out, leaving an equation with only one variable that can be solved.
-10y=36000-8300
Add 40y to -50y.
-10y=27700
Add 36000 to -8300.
y=-2770
Divide both sides by -10.
40x+50\left(-2770\right)=8300
Substitute -2770 for y in 40x+50y=8300. Because the resulting equation contains only one variable, you can solve for x directly.
40x-138500=8300
Multiply 50 times -2770.
40x=146800
Add 138500 to both sides of the equation.
x=3670
Divide both sides by 40.
x=3670,y=-2770
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}