Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x+18y=900,15x+6y=780
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9x+18y=900
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
9x=-18y+900
Subtract 18y from both sides of the equation.
x=\frac{1}{9}\left(-18y+900\right)
Divide both sides by 9.
x=-2y+100
Multiply \frac{1}{9} times -18y+900.
15\left(-2y+100\right)+6y=780
Substitute -2y+100 for x in the other equation, 15x+6y=780.
-30y+1500+6y=780
Multiply 15 times -2y+100.
-24y+1500=780
Add -30y to 6y.
-24y=-720
Subtract 1500 from both sides of the equation.
y=30
Divide both sides by -24.
x=-2\times 30+100
Substitute 30 for y in x=-2y+100. Because the resulting equation contains only one variable, you can solve for x directly.
x=-60+100
Multiply -2 times 30.
x=40
Add 100 to -60.
x=40,y=30
The system is now solved.
9x+18y=900,15x+6y=780
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&18\\15&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}900\\780\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&18\\15&6\end{matrix}\right))\left(\begin{matrix}9&18\\15&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&18\\15&6\end{matrix}\right))\left(\begin{matrix}900\\780\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&18\\15&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&18\\15&6\end{matrix}\right))\left(\begin{matrix}900\\780\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&18\\15&6\end{matrix}\right))\left(\begin{matrix}900\\780\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{9\times 6-18\times 15}&-\frac{18}{9\times 6-18\times 15}\\-\frac{15}{9\times 6-18\times 15}&\frac{9}{9\times 6-18\times 15}\end{matrix}\right)\left(\begin{matrix}900\\780\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{36}&\frac{1}{12}\\\frac{5}{72}&-\frac{1}{24}\end{matrix}\right)\left(\begin{matrix}900\\780\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{36}\times 900+\frac{1}{12}\times 780\\\frac{5}{72}\times 900-\frac{1}{24}\times 780\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\30\end{matrix}\right)
Do the arithmetic.
x=40,y=30
Extract the matrix elements x and y.
9x+18y=900,15x+6y=780
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15\times 9x+15\times 18y=15\times 900,9\times 15x+9\times 6y=9\times 780
To make 9x and 15x equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 9.
135x+270y=13500,135x+54y=7020
Simplify.
135x-135x+270y-54y=13500-7020
Subtract 135x+54y=7020 from 135x+270y=13500 by subtracting like terms on each side of the equal sign.
270y-54y=13500-7020
Add 135x to -135x. Terms 135x and -135x cancel out, leaving an equation with only one variable that can be solved.
216y=13500-7020
Add 270y to -54y.
216y=6480
Add 13500 to -7020.
y=30
Divide both sides by 216.
15x+6\times 30=780
Substitute 30 for y in 15x+6y=780. Because the resulting equation contains only one variable, you can solve for x directly.
15x+180=780
Multiply 6 times 30.
15x=600
Subtract 180 from both sides of the equation.
x=40
Divide both sides by 15.
x=40,y=30
The system is now solved.