Solve for b
b=4\sqrt{2}\approx 5.656854249
b=-4\sqrt{2}\approx -5.656854249
Share
Copied to clipboard
9b^{2}=279+9
Add 9 to both sides.
9b^{2}=288
Add 279 and 9 to get 288.
b^{2}=\frac{288}{9}
Divide both sides by 9.
b^{2}=32
Divide 288 by 9 to get 32.
b=4\sqrt{2} b=-4\sqrt{2}
Take the square root of both sides of the equation.
9b^{2}-9-279=0
Subtract 279 from both sides.
9b^{2}-288=0
Subtract 279 from -9 to get -288.
b=\frac{0±\sqrt{0^{2}-4\times 9\left(-288\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -288 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 9\left(-288\right)}}{2\times 9}
Square 0.
b=\frac{0±\sqrt{-36\left(-288\right)}}{2\times 9}
Multiply -4 times 9.
b=\frac{0±\sqrt{10368}}{2\times 9}
Multiply -36 times -288.
b=\frac{0±72\sqrt{2}}{2\times 9}
Take the square root of 10368.
b=\frac{0±72\sqrt{2}}{18}
Multiply 2 times 9.
b=4\sqrt{2}
Now solve the equation b=\frac{0±72\sqrt{2}}{18} when ± is plus.
b=-4\sqrt{2}
Now solve the equation b=\frac{0±72\sqrt{2}}{18} when ± is minus.
b=4\sqrt{2} b=-4\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}