Solve for a, b
a = \frac{320}{3} = 106\frac{2}{3} \approx 106.666666667
b=-960
Share
Copied to clipboard
9a+b=0,24a+b=1600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9a+b=0
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
9a=-b
Subtract b from both sides of the equation.
a=\frac{1}{9}\left(-1\right)b
Divide both sides by 9.
a=-\frac{1}{9}b
Multiply \frac{1}{9} times -b.
24\left(-\frac{1}{9}\right)b+b=1600
Substitute -\frac{b}{9} for a in the other equation, 24a+b=1600.
-\frac{8}{3}b+b=1600
Multiply 24 times -\frac{b}{9}.
-\frac{5}{3}b=1600
Add -\frac{8b}{3} to b.
b=-960
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{1}{9}\left(-960\right)
Substitute -960 for b in a=-\frac{1}{9}b. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{320}{3}
Multiply -\frac{1}{9} times -960.
a=\frac{320}{3},b=-960
The system is now solved.
9a+b=0,24a+b=1600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&1\\24&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\1600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&1\\24&1\end{matrix}\right))\left(\begin{matrix}9&1\\24&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\24&1\end{matrix}\right))\left(\begin{matrix}0\\1600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&1\\24&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\24&1\end{matrix}\right))\left(\begin{matrix}0\\1600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\24&1\end{matrix}\right))\left(\begin{matrix}0\\1600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-24}&-\frac{1}{9-24}\\-\frac{24}{9-24}&\frac{9}{9-24}\end{matrix}\right)\left(\begin{matrix}0\\1600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{1}{15}\\\frac{8}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}0\\1600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 1600\\-\frac{3}{5}\times 1600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{320}{3}\\-960\end{matrix}\right)
Do the arithmetic.
a=\frac{320}{3},b=-960
Extract the matrix elements a and b.
9a+b=0,24a+b=1600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9a-24a+b-b=-1600
Subtract 24a+b=1600 from 9a+b=0 by subtracting like terms on each side of the equal sign.
9a-24a=-1600
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-15a=-1600
Add 9a to -24a.
a=\frac{320}{3}
Divide both sides by -15.
24\times \frac{320}{3}+b=1600
Substitute \frac{320}{3} for a in 24a+b=1600. Because the resulting equation contains only one variable, you can solve for b directly.
2560+b=1600
Multiply 24 times \frac{320}{3}.
b=-960
Subtract 2560 from both sides of the equation.
a=\frac{320}{3},b=-960
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}