Solve for x, y
x=-2400
y=160
Graph
Share
Copied to clipboard
x+20y=800
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
0=x+15y
Consider the second equation. Multiply 0 and 0 to get 0.
x+15y=0
Swap sides so that all variable terms are on the left hand side.
x+20y=800,x+15y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+20y=800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-20y+800
Subtract 20y from both sides of the equation.
-20y+800+15y=0
Substitute -20y+800 for x in the other equation, x+15y=0.
-5y+800=0
Add -20y to 15y.
-5y=-800
Subtract 800 from both sides of the equation.
y=160
Divide both sides by -5.
x=-20\times 160+800
Substitute 160 for y in x=-20y+800. Because the resulting equation contains only one variable, you can solve for x directly.
x=-3200+800
Multiply -20 times 160.
x=-2400
Add 800 to -3200.
x=-2400,y=160
The system is now solved.
x+20y=800
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
0=x+15y
Consider the second equation. Multiply 0 and 0 to get 0.
x+15y=0
Swap sides so that all variable terms are on the left hand side.
x+20y=800,x+15y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&20\\1&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800\\\frac{1}{5}\times 800\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2400\\160\end{matrix}\right)
Do the arithmetic.
x=-2400,y=160
Extract the matrix elements x and y.
x+20y=800
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
0=x+15y
Consider the second equation. Multiply 0 and 0 to get 0.
x+15y=0
Swap sides so that all variable terms are on the left hand side.
x+20y=800,x+15y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+20y-15y=800
Subtract x+15y=0 from x+20y=800 by subtracting like terms on each side of the equal sign.
20y-15y=800
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
5y=800
Add 20y to -15y.
y=160
Divide both sides by 5.
x+15\times 160=0
Substitute 160 for y in x+15y=0. Because the resulting equation contains only one variable, you can solve for x directly.
x+2400=0
Multiply 15 times 160.
x=-2400
Subtract 2400 from both sides of the equation.
x=-2400,y=160
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}