Solve for y, x
x=-4\text{, }y=5
x=4\text{, }y=-5
Graph
Share
Copied to clipboard
8y+10x=0
Consider the first equation. Add 10x to both sides.
y^{2}-2x^{2}=-7
Consider the second equation. Subtract 2x^{2} from both sides.
8y+10x=0,-2x^{2}+y^{2}=-7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8y+10x=0
Solve 8y+10x=0 for y by isolating y on the left hand side of the equal sign.
8y=-10x
Subtract 10x from both sides of the equation.
y=-\frac{5}{4}x
Divide both sides by 8.
-2x^{2}+\left(-\frac{5}{4}x\right)^{2}=-7
Substitute -\frac{5}{4}x for y in the other equation, -2x^{2}+y^{2}=-7.
-2x^{2}+\frac{25}{16}x^{2}=-7
Square -\frac{5}{4}x.
-\frac{7}{16}x^{2}=-7
Add -2x^{2} to \frac{25}{16}x^{2}.
-\frac{7}{16}x^{2}+7=0
Add 7 to both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{7}{16}\right)\times 7}}{2\left(-\frac{7}{16}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2+1\left(-\frac{5}{4}\right)^{2} for a, 1\times 0\left(-\frac{5}{4}\right)\times 2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{7}{16}\right)\times 7}}{2\left(-\frac{7}{16}\right)}
Square 1\times 0\left(-\frac{5}{4}\right)\times 2.
x=\frac{0±\sqrt{\frac{7}{4}\times 7}}{2\left(-\frac{7}{16}\right)}
Multiply -4 times -2+1\left(-\frac{5}{4}\right)^{2}.
x=\frac{0±\sqrt{\frac{49}{4}}}{2\left(-\frac{7}{16}\right)}
Multiply \frac{7}{4} times 7.
x=\frac{0±\frac{7}{2}}{2\left(-\frac{7}{16}\right)}
Take the square root of \frac{49}{4}.
x=\frac{0±\frac{7}{2}}{-\frac{7}{8}}
Multiply 2 times -2+1\left(-\frac{5}{4}\right)^{2}.
x=-4
Now solve the equation x=\frac{0±\frac{7}{2}}{-\frac{7}{8}} when ± is plus.
x=4
Now solve the equation x=\frac{0±\frac{7}{2}}{-\frac{7}{8}} when ± is minus.
y=-\frac{5}{4}\left(-4\right)
There are two solutions for x: -4 and 4. Substitute -4 for x in the equation y=-\frac{5}{4}x to find the corresponding solution for y that satisfies both equations.
y=5
Multiply -\frac{5}{4} times -4.
y=-\frac{5}{4}\times 4
Now substitute 4 for x in the equation y=-\frac{5}{4}x and solve to find the corresponding solution for y that satisfies both equations.
y=-5
Multiply -\frac{5}{4} times 4.
y=5,x=-4\text{ or }y=-5,x=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}