Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8y+10x=0
Consider the first equation. Add 10x to both sides.
y^{2}-2x^{2}=-7
Consider the second equation. Subtract 2x^{2} from both sides.
8y+10x=0,-2x^{2}+y^{2}=-7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8y+10x=0
Solve 8y+10x=0 for y by isolating y on the left hand side of the equal sign.
8y=-10x
Subtract 10x from both sides of the equation.
y=-\frac{5}{4}x
Divide both sides by 8.
-2x^{2}+\left(-\frac{5}{4}x\right)^{2}=-7
Substitute -\frac{5}{4}x for y in the other equation, -2x^{2}+y^{2}=-7.
-2x^{2}+\frac{25}{16}x^{2}=-7
Square -\frac{5}{4}x.
-\frac{7}{16}x^{2}=-7
Add -2x^{2} to \frac{25}{16}x^{2}.
-\frac{7}{16}x^{2}+7=0
Add 7 to both sides of the equation.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{7}{16}\right)\times 7}}{2\left(-\frac{7}{16}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2+1\left(-\frac{5}{4}\right)^{2} for a, 1\times 0\left(-\frac{5}{4}\right)\times 2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{7}{16}\right)\times 7}}{2\left(-\frac{7}{16}\right)}
Square 1\times 0\left(-\frac{5}{4}\right)\times 2.
x=\frac{0±\sqrt{\frac{7}{4}\times 7}}{2\left(-\frac{7}{16}\right)}
Multiply -4 times -2+1\left(-\frac{5}{4}\right)^{2}.
x=\frac{0±\sqrt{\frac{49}{4}}}{2\left(-\frac{7}{16}\right)}
Multiply \frac{7}{4} times 7.
x=\frac{0±\frac{7}{2}}{2\left(-\frac{7}{16}\right)}
Take the square root of \frac{49}{4}.
x=\frac{0±\frac{7}{2}}{-\frac{7}{8}}
Multiply 2 times -2+1\left(-\frac{5}{4}\right)^{2}.
x=-4
Now solve the equation x=\frac{0±\frac{7}{2}}{-\frac{7}{8}} when ± is plus.
x=4
Now solve the equation x=\frac{0±\frac{7}{2}}{-\frac{7}{8}} when ± is minus.
y=-\frac{5}{4}\left(-4\right)
There are two solutions for x: -4 and 4. Substitute -4 for x in the equation y=-\frac{5}{4}x to find the corresponding solution for y that satisfies both equations.
y=5
Multiply -\frac{5}{4} times -4.
y=-\frac{5}{4}\times 4
Now substitute 4 for x in the equation y=-\frac{5}{4}x and solve to find the corresponding solution for y that satisfies both equations.
y=-5
Multiply -\frac{5}{4} times 4.
y=5,x=-4\text{ or }y=-5,x=4
The system is now solved.