Solve for x, y
x=-10200
y=9600
Graph
Share
Copied to clipboard
8x+10y=14400,12x+14y=12000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+10y=14400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-10y+14400
Subtract 10y from both sides of the equation.
x=\frac{1}{8}\left(-10y+14400\right)
Divide both sides by 8.
x=-\frac{5}{4}y+1800
Multiply \frac{1}{8} times -10y+14400.
12\left(-\frac{5}{4}y+1800\right)+14y=12000
Substitute -\frac{5y}{4}+1800 for x in the other equation, 12x+14y=12000.
-15y+21600+14y=12000
Multiply 12 times -\frac{5y}{4}+1800.
-y+21600=12000
Add -15y to 14y.
-y=-9600
Subtract 21600 from both sides of the equation.
y=9600
Divide both sides by -1.
x=-\frac{5}{4}\times 9600+1800
Substitute 9600 for y in x=-\frac{5}{4}y+1800. Because the resulting equation contains only one variable, you can solve for x directly.
x=-12000+1800
Multiply -\frac{5}{4} times 9600.
x=-10200
Add 1800 to -12000.
x=-10200,y=9600
The system is now solved.
8x+10y=14400,12x+14y=12000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&10\\12&14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14400\\12000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&10\\12&14\end{matrix}\right))\left(\begin{matrix}8&10\\12&14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&10\\12&14\end{matrix}\right))\left(\begin{matrix}14400\\12000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&10\\12&14\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&10\\12&14\end{matrix}\right))\left(\begin{matrix}14400\\12000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&10\\12&14\end{matrix}\right))\left(\begin{matrix}14400\\12000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{14}{8\times 14-10\times 12}&-\frac{10}{8\times 14-10\times 12}\\-\frac{12}{8\times 14-10\times 12}&\frac{8}{8\times 14-10\times 12}\end{matrix}\right)\left(\begin{matrix}14400\\12000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4}&\frac{5}{4}\\\frac{3}{2}&-1\end{matrix}\right)\left(\begin{matrix}14400\\12000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4}\times 14400+\frac{5}{4}\times 12000\\\frac{3}{2}\times 14400-12000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10200\\9600\end{matrix}\right)
Do the arithmetic.
x=-10200,y=9600
Extract the matrix elements x and y.
8x+10y=14400,12x+14y=12000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12\times 8x+12\times 10y=12\times 14400,8\times 12x+8\times 14y=8\times 12000
To make 8x and 12x equal, multiply all terms on each side of the first equation by 12 and all terms on each side of the second by 8.
96x+120y=172800,96x+112y=96000
Simplify.
96x-96x+120y-112y=172800-96000
Subtract 96x+112y=96000 from 96x+120y=172800 by subtracting like terms on each side of the equal sign.
120y-112y=172800-96000
Add 96x to -96x. Terms 96x and -96x cancel out, leaving an equation with only one variable that can be solved.
8y=172800-96000
Add 120y to -112y.
8y=76800
Add 172800 to -96000.
y=9600
Divide both sides by 8.
12x+14\times 9600=12000
Substitute 9600 for y in 12x+14y=12000. Because the resulting equation contains only one variable, you can solve for x directly.
12x+134400=12000
Multiply 14 times 9600.
12x=-122400
Subtract 134400 from both sides of the equation.
x=-10200
Divide both sides by 12.
x=-10200,y=9600
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}