\left. \begin{array} { l } { 8 a ^ { 3 } + b ^ { 3 } + 12 a ^ { 2 } b + 6 a b ^ { 2 } } \\ { 27 - 125 a ^ { 2 } - 12 a + 225 } \end{array} \right.
Least Common Multiple
\left(125a^{2}+12a-252\right)\left(2a+b\right)^{3}
Evaluate
\left(2a+b\right)^{3},\ 252-12a-125a^{2}
Share
Copied to clipboard
252-12a-125a^{2}=-125\left(a-\left(-\frac{12}{125}\sqrt{219}-\frac{6}{125}\right)\right)\left(a-\left(\frac{12}{125}\sqrt{219}-\frac{6}{125}\right)\right)
Factor the expressions that are not already factored.
125\left(a-\frac{-12\sqrt{219}-6}{125}\right)\left(a-\frac{12\sqrt{219}-6}{125}\right)\left(2a+b\right)^{3}
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
1000a^{5}+96a^{4}-2016a^{3}+125a^{2}b^{3}+72a^{2}b^{2}+12ab^{3}-1512ab^{2}-252b^{3}+750b^{2}a^{3}+1500ba^{4}+144ba^{3}-3024ba^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}