Solve for I_1, I
I_{1}=-1.25
I=2.46875
Share
Copied to clipboard
2.5+2I_{1}=0
Consider the first equation. Subtract 5.5 from 8 to get 2.5.
2I_{1}=-2.5
Subtract 2.5 from both sides. Anything subtracted from zero gives its negation.
I_{1}=\frac{-2.5}{2}
Divide both sides by 2.
I_{1}=\frac{-25}{20}
Expand \frac{-2.5}{2} by multiplying both numerator and the denominator by 10.
I_{1}=-\frac{5}{4}
Reduce the fraction \frac{-25}{20} to lowest terms by extracting and canceling out 5.
11-7\left(-\frac{5}{4}\right)-8I=0
Consider the second equation. Insert the known values of variables into the equation.
11+\frac{35}{4}-8I=0
Multiply -7 and -\frac{5}{4} to get \frac{35}{4}.
\frac{79}{4}-8I=0
Add 11 and \frac{35}{4} to get \frac{79}{4}.
-8I=-\frac{79}{4}
Subtract \frac{79}{4} from both sides. Anything subtracted from zero gives its negation.
I=\frac{-\frac{79}{4}}{-8}
Divide both sides by -8.
I=\frac{-79}{4\left(-8\right)}
Express \frac{-\frac{79}{4}}{-8} as a single fraction.
I=\frac{-79}{-32}
Multiply 4 and -8 to get -32.
I=\frac{79}{32}
Fraction \frac{-79}{-32} can be simplified to \frac{79}{32} by removing the negative sign from both the numerator and the denominator.
I_{1}=-\frac{5}{4} I=\frac{79}{32}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}