Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

y=-7x-z+9
Solve 7x+y+z=9 for y.
9\left(-7x-z+9\right)+z-x=6 z-x-\left(-7x-z+9\right)=19
Substitute -7x-z+9 for y in the second and third equation.
x=-\frac{1}{8}z+\frac{75}{64} z=14-3x
Solve these equations for x and z respectively.
z=14-3\left(-\frac{1}{8}z+\frac{75}{64}\right)
Substitute -\frac{1}{8}z+\frac{75}{64} for x in the equation z=14-3x.
z=\frac{671}{40}
Solve z=14-3\left(-\frac{1}{8}z+\frac{75}{64}\right) for z.
x=-\frac{1}{8}\times \frac{671}{40}+\frac{75}{64}
Substitute \frac{671}{40} for z in the equation x=-\frac{1}{8}z+\frac{75}{64}.
x=-\frac{37}{40}
Calculate x from x=-\frac{1}{8}\times \frac{671}{40}+\frac{75}{64}.
y=-7\left(-\frac{37}{40}\right)-\frac{671}{40}+9
Substitute -\frac{37}{40} for x and \frac{671}{40} for z in the equation y=-7x-z+9.
y=-\frac{13}{10}
Calculate y from y=-7\left(-\frac{37}{40}\right)-\frac{671}{40}+9.
x=-\frac{37}{40} y=-\frac{13}{10} z=\frac{671}{40}
The system is now solved.