Solve for x, y, z
x=-\frac{37}{40}=-0.925
y = -\frac{13}{10} = -1\frac{3}{10} = -1.3
z = \frac{671}{40} = 16\frac{31}{40} = 16.775
Share
Copied to clipboard
y=-7x-z+9
Solve 7x+y+z=9 for y.
9\left(-7x-z+9\right)+z-x=6 z-x-\left(-7x-z+9\right)=19
Substitute -7x-z+9 for y in the second and third equation.
x=-\frac{1}{8}z+\frac{75}{64} z=14-3x
Solve these equations for x and z respectively.
z=14-3\left(-\frac{1}{8}z+\frac{75}{64}\right)
Substitute -\frac{1}{8}z+\frac{75}{64} for x in the equation z=14-3x.
z=\frac{671}{40}
Solve z=14-3\left(-\frac{1}{8}z+\frac{75}{64}\right) for z.
x=-\frac{1}{8}\times \frac{671}{40}+\frac{75}{64}
Substitute \frac{671}{40} for z in the equation x=-\frac{1}{8}z+\frac{75}{64}.
x=-\frac{37}{40}
Calculate x from x=-\frac{1}{8}\times \frac{671}{40}+\frac{75}{64}.
y=-7\left(-\frac{37}{40}\right)-\frac{671}{40}+9
Substitute -\frac{37}{40} for x and \frac{671}{40} for z in the equation y=-7x-z+9.
y=-\frac{13}{10}
Calculate y from y=-7\left(-\frac{37}{40}\right)-\frac{671}{40}+9.
x=-\frac{37}{40} y=-\frac{13}{10} z=\frac{671}{40}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}