Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x+7y=-14,9x-8y=-69
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7x+7y=-14
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
7x=-7y-14
Subtract 7y from both sides of the equation.
x=\frac{1}{7}\left(-7y-14\right)
Divide both sides by 7.
x=-y-2
Multiply \frac{1}{7} times -7y-14.
9\left(-y-2\right)-8y=-69
Substitute -y-2 for x in the other equation, 9x-8y=-69.
-9y-18-8y=-69
Multiply 9 times -y-2.
-17y-18=-69
Add -9y to -8y.
-17y=-51
Add 18 to both sides of the equation.
y=3
Divide both sides by -17.
x=-3-2
Substitute 3 for y in x=-y-2. Because the resulting equation contains only one variable, you can solve for x directly.
x=-5
Add -2 to -3.
x=-5,y=3
The system is now solved.
7x+7y=-14,9x-8y=-69
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&7\\9&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\-69\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&7\\9&-8\end{matrix}\right))\left(\begin{matrix}7&7\\9&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&7\\9&-8\end{matrix}\right))\left(\begin{matrix}-14\\-69\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&7\\9&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&7\\9&-8\end{matrix}\right))\left(\begin{matrix}-14\\-69\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&7\\9&-8\end{matrix}\right))\left(\begin{matrix}-14\\-69\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{7\left(-8\right)-7\times 9}&-\frac{7}{7\left(-8\right)-7\times 9}\\-\frac{9}{7\left(-8\right)-7\times 9}&\frac{7}{7\left(-8\right)-7\times 9}\end{matrix}\right)\left(\begin{matrix}-14\\-69\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{119}&\frac{1}{17}\\\frac{9}{119}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-14\\-69\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{119}\left(-14\right)+\frac{1}{17}\left(-69\right)\\\frac{9}{119}\left(-14\right)-\frac{1}{17}\left(-69\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\3\end{matrix}\right)
Do the arithmetic.
x=-5,y=3
Extract the matrix elements x and y.
7x+7y=-14,9x-8y=-69
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\times 7x+9\times 7y=9\left(-14\right),7\times 9x+7\left(-8\right)y=7\left(-69\right)
To make 7x and 9x equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 7.
63x+63y=-126,63x-56y=-483
Simplify.
63x-63x+63y+56y=-126+483
Subtract 63x-56y=-483 from 63x+63y=-126 by subtracting like terms on each side of the equal sign.
63y+56y=-126+483
Add 63x to -63x. Terms 63x and -63x cancel out, leaving an equation with only one variable that can be solved.
119y=-126+483
Add 63y to 56y.
119y=357
Add -126 to 483.
y=3
Divide both sides by 119.
9x-8\times 3=-69
Substitute 3 for y in 9x-8y=-69. Because the resulting equation contains only one variable, you can solve for x directly.
9x-24=-69
Multiply -8 times 3.
9x=-45
Add 24 to both sides of the equation.
x=-5
Divide both sides by 9.
x=-5,y=3
The system is now solved.