Solve for x, y
x = -\frac{56}{15} = -3\frac{11}{15} \approx -3.733333333
y = \frac{206}{3} = 68\frac{2}{3} \approx 68.666666667
Graph
Share
Copied to clipboard
-\frac{3}{28}x=\frac{2}{5}
Consider the second equation. Combine \frac{3}{4}x and -\frac{6}{7}x to get -\frac{3}{28}x.
x=\frac{2}{5}\left(-\frac{28}{3}\right)
Multiply both sides by -\frac{28}{3}, the reciprocal of -\frac{3}{28}.
x=-\frac{56}{15}
Multiply \frac{2}{5} and -\frac{28}{3} to get -\frac{56}{15}.
7\left(-\frac{56}{15}\right)+\frac{2}{5}y=\frac{4}{3}
Consider the first equation. Insert the known values of variables into the equation.
-\frac{392}{15}+\frac{2}{5}y=\frac{4}{3}
Multiply 7 and -\frac{56}{15} to get -\frac{392}{15}.
\frac{2}{5}y=\frac{4}{3}+\frac{392}{15}
Add \frac{392}{15} to both sides.
\frac{2}{5}y=\frac{412}{15}
Add \frac{4}{3} and \frac{392}{15} to get \frac{412}{15}.
y=\frac{412}{15}\times \frac{5}{2}
Multiply both sides by \frac{5}{2}, the reciprocal of \frac{2}{5}.
y=\frac{206}{3}
Multiply \frac{412}{15} and \frac{5}{2} to get \frac{206}{3}.
x=-\frac{56}{15} y=\frac{206}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}